

CALTECH/MIT
VOTING TECHNOLOGY PROJECT
A multi-disciplinary, collaborative project of
the California Institute of Technology – Pasadena, California 91125 and
the Massachusetts Institute of Technology – Cambridge, Massachusetts 02139

AN N-VERSION ELECTRONIC VOTING SYSTEM

Soyini D. Liburd
MIT

Key words: electronic voting, voting security, voting system architecture, electronic
voting criteria, N-version programming

VTP WORKING PAPER #17
July 2004

 2

An N-version Electronic Voting System.

by

Soyini D. Liburd

Submitted to the Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science.

at the Massachusetts Institute of Technology

May 20, 2004

© Copyright 2004 Soyini Liburd. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and distribute
publicly paper and electronic copies of this thesis and to

grant others the right to do so.

Author ___
Department of Electrical Engineering and Computer Science

May 20, 2004

Certified by ___
Ted Selker, Associate Professor, Program in Media Arts and Sciences

Thesis Supervisor

 Accepted by ___
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

 3

An N-version Electronic Voting System.
by

Soyini D. Liburd

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science.

at the
Massachusetts Institute of Technology

May 20, 2004

Abstract
The ballot battles of the 2000 US Presidential Election clearly indicate that existing voting
technologies and processes are not sufficient to guarantee that every eligible voter is granted
their right to vote and implicitly to have that vote counted, as per the fifteenth, nineteenth, twenty
fourth and twenty sixth amendments to the US constitution [1-3]. Developing a voting system
that is secure, correct, reliable and trustworthy is a significant challenge to current technology [3,
4]. The Secure Architecture for Voting Electronically (SAVE) demonstrates that N-version
programming increases the reliability and security of its systems, and can be used to increase the
trustworthiness of systems. Further, SAVE demonstrates how a viable practical approach to
voting can be created using N-version programming. SAVE represents a significant contribution
to voting technology research because of its design, and also because it demonstrates the benefits
of N-version programming and introduces these benefits to the field of voting technology.

Thesis Supervisor: Ted Selker
Title: Associate Professor of Media Arts and Sciences

 4

Acknowledgements

I would like to especially thank Professor Ted Selker for proposing the application of N-version
programming to voting and for his invaluable contributions and support throughout the very
short and very rewarding semester that I worked on this project.

I sincerely thank Professor Stephen Graves and Professor Ron Rivest for their generous
assistance and availability throughout the work on this project. Your suggestions and advice
have definitely helped improve the results of this project thus far.

Special thanks to the students, Shawn Sullivan, Arturo Hinojosa, David Chau and Kevin Emery,
who helped me implement a prototype for our N-version system. I am glad you are enjoying this
project and I look forward to continuing to work with you all.

Lastly, I would like to extend heartfelt thanks to my mother, Yolanda, my sister, Sekayi and my
brother, Lasana, as well as to all my friends, for their continued encouragement and support.
Your round-the-clock cheers and proddings were quite effective, for as you can see, I am here.

 5

Table of Contents
1 Introduction ... 8
 1.1 Motivation for Electronic Voting …………………………………………….. 9
 1.1.1 Problems with Paper Voting …………………………………………… 9
 1.1.2 The Electronic Voting Solution ……………………………………….... 11
 1.2 Electronic Voting Criteria…………………………………........…………….. 12
 1.3 Related Work ……………………….…………………………………...….... 14
 1.4 N-version Programming………………………………………………………. 14
 1.4.1 N-version Performance on Electronic Voting Criteria.............................. 15
 1.5 Introduction to SAVE - A Secure Architecture for Voting Electronically…... 18
 1.5.1 SAVE Objectives ………………………………………………………. 18
2 N-version Programming …………………………………………………………. 22

2.1 N-version Questions and Research ………………………….………………... 22
2.1.1 The Question of Correctness …………………………………………… 23
2.1.2 N-version Research ……………………………………………………... 24

2.2 SAVE as N-version Software ………………………………………………… 26
2.3 SAVE’s N-version Methodology and Concepts ……………………………… 28

2.3.1 Diversity ………………………………………………………………… 28
2.3.2 The N-version Execution Environment (NVX) ………………………… 29
 2.3.2.1 Diverse, Redundant NVX implementations ……………………… 30
 2.3.2.2 NVX responsibilities ……………………………………………... 31
2.3.3 N-version Software Development ………………………………………. 38

 2.3.3.1 Functional Specification ………………………………………….. 38
 2.3.3.2 The Coordinating Team (c-team) ………………………………… 40
3 SAVE - A Secure Architecture for Voting Electronically 43
 3.1 SAVE Components ……………………………………………………….…... 44
 3.1.1 Ballot Request Module ……………………………………………….…. 45
 3.1.2 User Interface Module ………………………………………………..…. 45
 3.1.3 Listener Module ……………………………………………………..…... 47
 3.1.4 Registration Module ……………………………………………………... 48
 3.1.5 Witness Module …………………………………………………………. 50
 3.1.6 Aggregator Module ……………………………………………………… 50
 3.2 SAVE Architecture ……………………………………………………………. 51

 3.2.1 Design Assumptions …………………………………………………….. 51
 3.2.2 The Extent of System Redundancy …………………………………….... 53
 3.2.3 System Initialization ……………………………………………………...53
 3.2.4 The Voting Process ……………………………………………………… 55
 3.2.5 Audit Trails & Recounting ……………………………………………….58
 3.2.6 HAVA Compliancy ………………………………………………………60

 3.3 SAVE Security Features ………………………………………………………. 60
 3.3.1 The Trust Model ………………………………………………………… 61
 3.3.2 The Threat Model ……………………………………………………….. 61

 3.3.3 Security through Diversity and Redundancy ……………………………. 68
 3.3.4 Cryptographic Security ………………………………………………….. 71
4 Modeling SAVE’s Probability of Failure ……………………………………….. 72

 4.1 Abstraction of the SAVE System ……………………………………………... 73

 6

 4.2 SAVE Fault and Failure Model ………………………………………………. 74
 4.2.1 Model Definitions …………………………………………………… … 74
 4.2.2 Model Assumptions ………………………………………………… …. 75
 4.2.3 Model of SAVE System PFDs …………………………………… …… 78
 4.3 Application of the Model to the SAVE System ……………………………… 81

5 Implementation …………………………………………………………………... 84
 5.1 User Interface Implementation ……………………………………………….. 85
6 Issues, Limitations, Considerations, Lessons and Future Work ……………… 91

6.1 Issues and Limitations ………………………………………………………... 91
6.2 Considerations and Lessons …………………………………………………... 96
6.3 Future Work …………………………………………………………………... 97

7 Conclusion ………………………………………………………………………… 101
References …………………………………………………………………………... 103
Appendix A …………………………………………………………………………. 110
Appendix B …………………………………………………………………………. 131

 7

List of Figures

Figure 2.1: Generalization of SAVE communication network ………………………. 32
Figure 2.2: SAVE cross check point …………………………………………………. 36
Figure 3.1: SAVE System ……………………………………………………………. 44
Figure 3.2: Voting Process ………………………………………………………….... 56
Figure 3.3: Knowledge Separation ……………………………………………………67
Figure 5.1: SAVE ballot ……………………………………………………………....86
Figure 5.2: Candidate selection ……………………………………………………….87
Figure 5.3: Overvoting prevented ……………………………………………………. 88
Figure 5.4: Tab color cues …………………………………………………………… 89
Figure 5.5: Summary of voter’s selections – displayed before vote is cast ………….. 90

 8

List of Tables
Table 4.1: Mathematical symbols and abbreviations ………………………………… 78

 9

 Chapter 1

Introduction

Although, voting systems and protocols have improved since their inception, more must be done

to improve their accuracy, reliability, efficiency and security, as well as accessibility and

trustworthiness [3, 5, 6]. Paper ballots are subject to loss [5] and may be corrupted in various

ways, including accidental or malicious overvoting [7]. Additionally, paper ballots must be

securely transported and counted, activities which tend to make the election process slow, labor

intensive and costly [3]. Paper ballots also have significant usability limitations which make

them generally less accessible to voters who are not comfortable with the languages available at

the polling station, voters who are illiterate and voters who are vision impaired or have other

disabilities [3, 5]. Many such voters require assistance which compromises their privacy and

their trust that their vote was cast as intended [5]. Electronic voting systems have been proposed

to address these issues, but they have produced their own problems [8-12, 13-14]. Security

flaws, correctness problems and other vulnerabilities in existing electronic voting systems have

resulted in flawed elections, where potential votes were refused, and actual votes were discarded

or incorrectly counted [8-12, 13]. Electronic voting systems have also suffered from reliability

and availability problems [14]. These problems have reduced public acceptance and trust in

electronic voting systems [8-12, 13-14].

This thesis develops a secure, reliable, accessible and trustworthy voting system that addresses

the problems found in current voting systems. In this chapter, we motivate the use of electronic

voting systems and introduce electronic voting criteria that should be satisfied in order to

develop a secure, reliable and trustworthy voting system. This chapter then outlines how an N-

version voting system, in particular, could satisfy these voting criteria. Chapter 2 provides

detailed motivation for our use of N-version programming, including the plausibility and

effectiveness of N-version programming as a means of improving reliability. It describes the

fundamental concepts in N-version programming and defends the credibility of N-version

programming by examining N-version research and results. Chapter 2 concludes by motivating

and explaining the N-version implementation choices made in SAVE and describing SAVE as an

N-version structure. Chapter 3 describes the SAVE voting system in detail, including the

 10

architecture, voting process and system assumptions made, and chapter 4 analyzes this system.

Chapter 5 describes details regarding the implementation of our SAVE prototype, Chapter 6

explains the issues and limitations of the current SAVE system and also discusses plans for

future work on the SAVE system. Specially, chapter 6 notes some lessons that would be helpful

for future N-version system designers. This thesis concludes in chapter 7 with SAVE’s

contribution to voting systems research and the voting systems community in general.

1.1 Motivation for Electronic Voting

Recent problems with electronic voting machines have caused a fresh wave of panic and

uncertainty about whether electronic voting can indeed improve on paper systems [15, 16]. It is

critical to remember however that the problems that occurred in the California Primary Election

in March 2004 are representative of a few voting schemes and implementation, not of electronic

voting as a whole. We also emphasize that reverting to paper systems is not the long term

solution to our voting woes. There are significant problems with paper voting as catastrophically

proven in the 2000 Presidential Election, and electronic voting can solve most of these problems

[3]. In this section, we briefly recall the problems with paper voting that arose in the 2000

Presidential Election and describe how electronic voting systems can address them. In the next

section however, we will address electronic voting concerns by listing criteria for electronic

voting systems that address popular worries and explaining how an N-version electronic voting

system can counter concerns by satisfying the criteria.

1.1.1 Problems with Paper Voting

The paper voting systems currently used in the United States are: full paper ballot schemes,

punch card systems and optical scan systems [3]. All of these schemes face numerous problems

that together have disenfranchised millions of voters [3].

 11

Administration Difficulties

All paper ballot schemes face administrative nightmares in order to get the right ballots to the

right locations, including the right proportions of ballots in different languages or with other

distinguishing features [3]. Further, the paper ballots required by these schemes are expensive to

print, secure and distribute correctly [3]. Full paper ballot systems and punch cards face the

additional task of securing the ballots after they have been marked and before they can be

counted; ballot boxes must be securely stored and transported and subsequent ballot box opening

and ballot counting must be carefully monitored [3]. We believe that all of this costs

significantly more time and money than would be the case with electronic systems. Further, the

mundane, repetitive task of hand-counting is relatively slow, cumbersome, labor-intensive,

inefficient and error-prone [3]. Hand-counting the millions of ballots generated in a US

presidential election would be quite infeasible, and thus cries to go completely back to full paper

ballot systems are unreasonable in practice.

User Interface Problems

User Interface problems are again common to all paper ballot schemes [3]. In many cases paper

voting system user interfaces allow voters to make mistakes that ruin their ballot [3]. For

example, it is estimated that 1.5 million presidential votes are lost each election and 3.5 million

votes for governor and senator are lost each cycle, due to undervoting or overvoting [3].

Undervotes have been known to occur quite frequently in paper systems, where, for example, a

circle or arrow is not sufficiently filled in in a full paper ballot scheme, or a punch card machine

only dimples the ballot instead of completing the punch in a punch card system [3]. Overvoting

occurs in many cases because of stray marks or dimpling at multiple indicators or holes

corresponding to candidates [3]. Additionally, in some cases like the famed “butterfly ballots,”

the ballot layout is just so confusing that a voter completely misrepresents his intentions, by

actually voting for candidate A, say, when he thinks he has voted for candidate B [3]. Falloff is

another user-interface related problem in voting. Falloff is the name given to the phenomena that

candidates near the bottom of a ballot are less likely to be selected than candidates at the top. It

is very difficult for paper ballot systems to compensate for falloff. Attempts to negate the effects

of falloff on paper ballots exist, for example, in a few places voting officials rotate the placement

of names on the ballot. However, this fix requires the printing of many instances of the same

 12

ballot with different name rotations, and this increases the cost of supplying ballots as well as the

administrative difficulties associated with transporting and distributing ballots.

Accessibility

Paper voting systems are not accessible to many voters with special needs [5]. Fonts are

generally small and ballots are generally crowded with names, for example, and these and other

issues make voting difficult for vision impaired voters or voters with some learning disabilities

[5, 85]. Further all current paper voting systems require some sort of motor control, which

makes secret voting impossible for many paralyzed citizens [5]. Because of these and other user

interface problems in paper systems, it is said that approximately 16.4 million disabled and 37

million illiterate American voters are unable to vote in privacy, and millions of other persons

with less severe impairments find voting extremely difficult [5].

System Problems

Punch card and optical scanner systems have also had structural problems that have resulted in

lost votes [3]. Poorly aligned ballots in punch card systems have caused many votes to be lost as

voter punches make holes between candidates, for example [17]. Additionally, punch card

systems are prone to unreliable and inconsistent counts, as dimples snag or chads fall out, after

multiple passes through the reader [3]. Punched ballots are not guaranteed to be true

representatives of the voter’s intention or even of what the voter cast, as the ballot is not

maintained in its original state.

1.1.2 The Electronic Voting Solution

Modern electronic voting systems can solve the problems with paper systems highlighted in the

previous section. The ballots are electronic and so this removes the issues and frustrations with

paper administration. User interface and accessibility problems can be solved by flexible font

size, coloring and other details, as well as multi media interfaces and special equipment to

translate the more limited signals of paralyzed voters [5]. Disabled persons report significantly

preferring electronic voting user interfaces to the paper user interfaces they used previously [5].

Further, it is easy to compensate for the falloff effect; candidate names can be rotated by the

software and displayed at the UI, without any additional cost or administrative difficulties.

 13

System failure has been a problem with current electronic voting systems [16]. However, we

believe such system failure is a problem with particular systems, particular implementations of

those systems, and insufficient testing, rather than a problem with electronic voting in general.

Further, we believe that an N-version voting system can be significantly more reliable than

existing systems and comparable single-version systems.

1.2 Electronic Voting System Criteria

A reliable, trusted voting system is a vital to communities and countries where matters of

importance are decided on by voting. Because of the importance of such systems, as well as the

disappointments arising from the use of flawed electronic voting systems, much work has been

done in establishing criteria that a sound electronic voting system must necessarily satisfy [18-

22]. The major results of such research have been summarized in the following electronic voting

system criteria:

 System and Data Integrity and Reliability.

 The behavior and output of the voting system must be correct and must not be altered

by tampering with the system or with any data involved in entering and counting votes.

 Personnel integrity.

 The persons involved in developing, operating, and administering an electronic voting

system must be of unquestioned integrity.

 Operator authentication.

 The persons authorized to administer an election must gain access to the voting system

only through nontrivial authentication mechanisms.

 System accountability and verifiability.

 All internal system operations, including testing and modification, must be

 monitored without violating voter confidentiality. Additionally, the correctness of

 the election result must be verifiable.

 14

 Voter anonymity and data confidentiality.

 The voting counts must be protected from external reading during the voting

 process. Also, the association between recorded votes and the identity of the voter

 must be completely unknown by third parties as well as within the voting system.

 System credibility.

 The system’s trustworthiness must be irrevocably established and assured.

 System availability.

 The system must be protected against both accidental and malicious denials of

 service, and must be available for use whenever it is expected to be operational.

 Interface usability.

 Systems must be amenable to easy use by local election officials, and must not

 necessitate the on-line control of external personnel (such as vendor-supplied

 operators). The interface to the system should be inherently fail-safe, fool-proof, and

overly cautious in defending against accidental and intentional misuse.

While the above criteria are not provably sufficient, they have generally been agreed upon as

necessary [18-22]. As such a sound, reliable and secure voting system must be expected to meet

the above requirements.

 15

1.3 Related Work

Research on voting has led to established electronic voting systems [23-26], voting schemes and

protocols [27-30] and prototyped voting architectures [31-33] which meet some of voting

criteria. However, as single-version systems, they are theoretically unreliable because they

contain single points of failure and place an excessive amount of trust in the ability and integrity

of programmers [23-35]. Single version systems are extremely vulnerable to bugs, environment

and compiler errors, trojan horses and trapdoors. The presence of even one of those faults in

critical sections of the code could destroy system reliability and integrity. Single-version

systems are also particularly vulnerable to corrupt or careless insiders. These issues make it

difficult to guarantee that the data confidentiality, integrity, and reliability criteria will be met. In

fact faults and vulnerabilities have been found in some of the established voting systems [8-12,

36]. Popular cryptographic voting schemes, such as the mix-net model, the blind-signatures

model and the homomorphic encryption model [27-30, 34] are promising but, as presented, they

still suffer from the problems typical to single-version systems. Also, these cryptographic

models are much more complex than our system, and as such would face the disadvantages

associated with relative complexity [37]. In particular, they are likely to be more difficult to

correctly implement and review than our simpler system [37]. These issues with current systems

and protocols have motivated us to research an N-version voting system. We believe that our

voting system is an improvement, in practice, over current schemes.

1.4 N-version Programming

An N-version System (NVS) consists of (1) several software modules - developed in controlled

isolation - which implement an identical function, and (2) a decision algorithm for determining

the system consensus result as a function of each software module’s result. The process by

which the N-version Software modules are produced is called N-version Programming and is the

focus of much research [38-43]. The key advantage of such N-version design, implementation

and execution is that structurally there is no way the whole system can be compromised without

compromising a significant number of the parts. The modules are simple and they corroborate

each other, so we can fairly certain about the accuracy of the results that they elect together.

Further, we can ignore the results that are not corroborated by the other modules. These

 16

properties make an N-version system more robust and trustworthy than corresponding single-

version architectures – that is, the single-version system that would result when N is 1.

N-version Programming assumes that a majority of the components implementing the same

function fail at different points, if at all, so that the failures can be detected and corrected [43].

The N-version community believes that this can be achieved by introducing diversity [38-43,

44]. In particular, diversity may be introduced in the following elements of the NVP process: (1)

training, experience, and location of developers; (2) algorithms and data structures; (3)

programming languages; (4) software development methods; (5) programming tools and

environments (including compilers); (6) testing methods and tools [38, 44]. Diversity may also

be introduced in the NVS execution environment, by running the N-version software modules on

multiple computers and communicating with them via multiple channels [45].

Software and environment testing can help ascertain that there is a sufficient amount of diversity

in the system. Already, there has been significant research done on measuring diversity [43] and

commonality checkers exist which can be used to test how similar two software modules are

[46].

1.4.1 N-version Performance on Electronic Voting Criteria

This section sketches the ways in which the N-version system is, by design, able to meet each criterion.

System and Data Integrity and Reliability

The N-version System is resistant to tampering: a majority of software modules must be corrupt

or receive corrupted data, in order for the behavior or output of the voting system to be affected.

Additionally, because of the separation of knowledge in the SAVE system, many modules from

different stages must collude for significant voting secrets to be revealed. If each module is

compiled on a different compiler, the system as a whole can resist mistakes introduced by Trojan

horses and compiler bugs. Additionally, traditional steps can be taken to improve the quality of

each module. In particular, with proper testing and quality assurance techniques such as

software versioning and certification, the system can make guarantees about which code is

currently a part of the system and how established the code’s correctness is. Read-only software

 17

executables, run from once-writable memory, can prevent the modification of software at run-

time.

Personnel integrity

As with any important system, special attention should be paid to acquiring developers and

administrators with established integrity. An N-version system however further decreases the

motivation for dishonesty, because each worker is made aware than he would have to corrupt a

majority of other well-isolated components or workers in order to affect the overall behavior of

the system.

Operator authentication

Operator authentication can be achieved in a variety of ways, including biometrics, non-trivial

proofs and dynamic passwords. Additionally, with N-version software, operators have access to

only a few modules or components within the system, making the system overall less susceptible

to misuse.

Voter anonymity and data confidentiality

With suitable encryption of ballots and messages, separation of ballot encryption from

identifying information encryption, module authentication and blind-signatures, it is possible to

maintain both voter anonymity and data confidentiality.

System accountability and verifiability

As demonstrated by our own N-version voting system, an N-version system can be designed to

provide audit trails that correctly reflect the behavior and output of the system. The audit trails

will reflect the state of the majority of modules, or more generally, the decision made by the N-

version decision algorithm at each stage. The audit trails, combined with the system integrity

described previously, provide accountability and verifiability, both in implementation and

execution.

System credibility

 18

The system’s trustworthiness must be irrevocably established and assured. Popular methods of

establishing trust include allowing all or part of the system to be open source and having the

entire system certified by trusted, expert persons or groups. These methods are suitable for N-

version systems as well. To support such disclosure, the entire N-version process must be

clearly and consistently documented, including the assurance and testing measures taken for each

module. Additionally, we are investigating the feasibility of promoting trust by allowing the

public to contribute specially designed, rigorously tested modules that can reassure contributors

without compromising the system. N-version systems are not dependent on any one of its

modules, and this mitigates the risk of including a publicly contributed module. The SAVE

system could still function correctly, even if some of the publicly contributed modules were

faulty or malicious. But public trust would be higher since individuals themselves, or persons

that individuals respect and trust, contributed to the SAVE functionality.

System availability

An N-version Voting Architecture is well suited to execution on a distributed system which

makes system availability much likelier. With time limits on module operations, we can treat

computers or channels that fail, just as we would treat any corrupt or erroneous module. In this

way, voting can continue as long as a majority of modules do not stop or otherwise fail. An N-

version system is therefore likely to be more available than a single-version electronic voting

system which could be brought down by bugs or hacks at critical system points or denial of

service attacks at its communication channels.

Interface usability

We can leverage the extreme modularity of N-version programming to create an interface that is

easy for voters to use. SAVE has numerous measures in place to ensure that the interface is easy

to understand and use. At the point of voting, the most suitable user interface display style can

be selected dynamically and swapped in without modifying or affecting the rest of the system.

Our research group is doing a lot of significant work on user interface design to meet the varying

needs of the voting public [47]. This work will be leveraged by the SAVE system.

1.5 Introduction to SAVE - A Secure Architecture for Voting Electronically

 19

While there has been research which approached various voting problems and led to systems

which meet some of voting criteria, our system is more comprehensive. We have developed a

practical, simple voting architecture which we believe meets voting system security and

soundness criteria while addressing the voting community’s concerns about electronic voting

[48-50]. We have named this voting architecture a Secure Architecture for Voting Electronically

(SAVE). The SAVE concept, including its fundamental design and principles, was developed by

our research group and introduced in [45]. This thesis refines and extends that research, by

creating an end-to-end secure, robust and accurate voting architecture.

1.5.1 SAVE Objectives

The following are key objectives of the SAVE Architecture. These objectives follow closely the

voting system criteria established by the voting community [18-22].

Minimal Trust; No Single Point of Failure

We recognize that minimizing the trust placed in individual components of the system will

increase the robustness and security of the system. To this end, we trust no single component;

each component assumes that any other component, whether human or software, could be

malicious or make errors. The SAVE system is made N-version, where each component is

suitably diverse, so a significant number of components must be malicious, erroneous, or

successfully attacked at any stage, in order to corrupt that stage. No single portion of software,

and no single programmer, can compromise the system, that is, there is no single point of failure.

This trust model distinguishes our voting research from the rest of research on electronic voting,

where some component of the system must be trusted [35] – generally the programmers who

contribute to the system implementation or some central administrator or authority.

Redundancy

Another key attribute of the SAVE system is redundancy. As an N-version system, we have n

versions of each type of software module, and they all implement the same function. This

redundancy facilitates the N-version error detection and correction discussed earlier. More

dramatically, the ballots themselves are made redundant: when a vote is cast, n copies of the

ballot are immediately created to form part of the initial inputs to each of the redundant

 20

components at stage 1 of the process. Thus the SAVE system is able to recover if some of these

copies become corrupted or are lost – as long as a majority of the ballot copies arrive

successfully at the stage 1 components.

Robustness

The N-version foundation gives SAVE the ability to detect and correct stage result differences

which are likely errors. Additionally, the software components that make up the system are run

from different computer hosts and have access to separate and secure storage. These features

result in increased availability of the system during execution. Failures of a few software

components do not cause the whole system to fail. Also, attacks on a particular host or channel

will not be able to disrupt the system because non-responsive components are treated as faulty

and ignored, allowing execution to continue. This makes the SAVE system well able to deal

with unreliable networks in a distributed environment, such as the internet. These features

combine to create a robust system.

End-To-End Security

Many schemes and protocols have been presented that achieve security in some parts of the

system while ignoring others [27-30, 34]. These can be useful, but must be included in an end-

to-end scheme to be truly and practically usable. Security goals must be established and

maintained regarding the hardware that these systems are executed on, the compilers that are

used, the human and other forms of secret storage, etc. The SAVE architecture is an end-to-end

system and particular attention has been paid to system security.

Verifiability

Verifiability is crucial to assure correctness of the system, promote public trust in the system and

facilitate recounts. SAVE establishes electronic audit trails to audit each vote cast. The

electronic audit trails are generated separately, by independent modules, and are stored on

different computers, in such a way that they are not modifiable. Also, a majority of the audit

trails extracted from these computers must agree before the audit trail is accepted. These n-

version electronic audit trails are more reliable than a redundant audit trail made by copying the

single result of a single-version system. Also, these electronic audit trails are far more robust

 21

than a paper audit trail which may become lost, destroyed or corrupted by one malicious act or

error. We note however, that the SAVE system is capable of incorporating paper audit trails if

social policy demands them.

Simplicity

One of the tenets of the SAVE system is simplicity. The benefits of minimizing complexity are

well documented: minimizing complexity in a system tends to also minimize bugs, while making

the system more testable and more easily documented and maintained [37]. We have taken steps

make the design and implementation of SAVE as simple as possible. The system is designed

such that each module has a small and relatively simple task to perform. This means that the

module can generally be implemented in a few hundred lines of code at most. Small modules

implementing simple tasks are generally easier to review, test and maintain than complex ones.

These features also make the modules easier to certify by independent groups. Also for

simplicity, we use a minimal operating system with a trusted computing base, rather than a large,

complex operating system whose correctness and security would be more difficult to attest.

 22

Accessibility

Many persons are unwilling or unable to vote because current systems are not sufficiently

accessible [5]. Additionally, user interface problems are arguably responsible for most of the

spoilt ballots that are generated during elections [2-3, 7]. The modularity of the SAVE design is

particularly useful and appropriate at the user interface because it allows the Module to be

updated easily. Another advantage of the SAVE architecture is that the User Interface Module

completely separates content from presentation style. Thus the same ballot can be presented in

any appropriate style without having to recertify software, reinitialize voting machines, or

undergo any of the lengthy and cumbersome processes that would be necessary in monolithic

systems. This separation, as well as the general modularity, allows the User Interface to keep

pace with human factors’ research and create the best possible voting experience. Already, our

User Interface contains many features, such as textural and audio cues to important voter actions,

which make the User Interface more accessible than paper ballots. The flexibility of the SAVE

user interface, as well as the results of our research in ballot and user interface design, should

increase the number of voters who are able to vote independently.

As indicated in this chapter, N-version programming increases the reliability, security and

trustworthiness of systems. These effects are particularly useful for voting systems where high

reliability is required and trustworthiness is demanded. As such, we feel that an N-version

system such as SAVE, can improve voting. In general, our research is an important contribution

to voting because it highlights the applicability of N-version programming to voting.

 23

Chapter 2

N-Version Programming

N-version programming (NVP), as it is applied to software, was introduced in technical literature

in 1977 [38, 40]. The definition and constraints of N-version programming have evolved over

the years but can be stated, in general, as the independent generation of N functionally equivalent

programs, possessing all the necessary attributes for concurrent execution, with specified state to

be compared at expressed points along the execution. The action to be taken at the each

comparison point is also specified, but minimally involves the election of some subset of “valid”

states from among the states produced by the N versions at that comparison point [38]. At each

comparison point, a decision algorithm responsible for that election is executed from within the

N-version execution environment (NVX). N-version researchers theorize that independent

software generation and further diversity introducing techniques will lead to the creation of

software versions which contain significantly different faults that are unlikely to cause the same

failures at a comparison point [38, 40, 51]. These researchers therefore conclude that if a

majority of versions agree on some output, that common output is likely to be correct [38, 40, 52,

51]. The result of the N-version Programming process is an N-version software (NVS) unit [38].

Though there has been significant research questioning the validity of the N-version assumption

[53-54], recent research has been much more positive, in particular, several research groups have

affirmed the significantly superior correctness and availability that N-version systems are able to

achieve relative to single-version systems [55-58]. The challenges and benefits of N-version

programming, and the justification of the N-version assumption as applied to the SAVE system,

are discussed here.

2.1 N-version Questions and Research

The fact that non-trivial systems cannot be implemented without faults is at the foundation of N-

version programming [37, 59, 60]. Single version software is particularly vulnerable to the

errors that result from these faults because they do not generally have means of error detection

and correction. Further, these faults and their failures persist in software; the errors caused by a

fault are guaranteed to happen at any time that the environment meet’s the fault’s failure

requirements [59]. N-version programming was established in an attempt to reduce the effect of

 24

these faults on the containing system. N-version programming uses functional redundancy to

generate, for each input, many possibly correct states at each comparison point. The redundancy

ensures that states being compared are equivalent and correct in versions that have not failed on

the input. Additionally, N-version programming uses diversity to minimize both the number of

errors for a particular input and the number of similar errors for that input. If the incorporated

redundancy and diversity indeed achieve these tasks, then their combination implies that larger

sets of equivalent states are more likely to be correct.

2.1.1 The Question of Correctness

The decision algorithm is critical to N-version software since its ability to elect correct states

from the modules directly determines the reliability of the N-version software unit as a whole. It

is therefore necessary to be clear about exactly which parameters and considerations affect the

decision algorithm and its output. For each of the states at a comparison point, the proportion of

versions that share that state corresponds to the likeliness that the versions with that state are

correct. The simplest decision algorithm therefore merely elects the state that occurs most

frequently among the versions at the comparison point – if more than some minimum proportion

of versions share that state. N-version programmers assume that sufficient versions are near

enough to correct that some minimum threshold of them will give the correct output for each

input in the input space with high probability. The optimal threshold value varies for each

system and is difficult to quantify, but it is often set as the absolute majority with respect to N,

⎡N/2⎤. In fact, the threshold’s value is a function of the confidence required in the correctness of

the elected state, the diversity of the N modules, as well as the correctness of each of the versions

and of any intermediary communication channels that are used. The threshold for a N-version

system is difficult to quantify because the exact function relating the dependant variables is

unknown and some of the dependant variables are themselves difficult to quantify; quantitative

measurements for diversity is non-trivial, and similarly, quantitative measurements for

correctness can be difficult for large input spaces. More complex election algorithms may

require that only pre-specified aspects of the states at the comparison point be equivalent, or may

have other base or “sanity” checks that each state must fulfill in order to be considered among

the potentially correct. Such extensions do not fundamentally modify the N-version paradigm.

 25

Is it reasonable to expect that the typical “consensus-seeking” decision algorithm would lead to

election of the correct state with high probability? Generally, N-version researchers accept that

the output elected by such a decision algorithm in an N-version system, is theoretically more

likely to be correct than the output of a single version system [53, 61, 59, 52]. There is debate

however on the extent of the improvement in reliability that N-version systems achieve

compared with their single-version counterparts, and whether that improvement is significant

enough to warrant the additional requirements and costs of N-version system development [53,

59, 52]. Significant version diversity is necessary to make both the number of errors for a

particular input and the number of similar errors for that input small enough to validate the

election process and, consequently, the reliability improvement. However, little is known about

how to quantify the effects of particular methods for adding diversity on the distribution and type

of errors in a system [38, 40-41, 51, 62], making it difficult to determine whether diversity

sufficient to validate the election process can be achieved in practice. The methods to be used

for increasing diversity and the nature in which said methods will affect system failures are still

largely decided by intuition and qualitative prediction [38, 40, 41, 62], but research geared

towards developing rigorous, testable, quantitative methods are being developed [51, 61-65].

2.1.2 N-version Research

Research has led to significant breakthroughs in the study and defense of N-version

programming [38-42, 58, 61-62]. Avizienes, Popov, Strigini, et al have contributed with

methodologies of N-version programming, describing processes and tools for the specification,

implementation, testing, execution and maintenance of N-version software [38, 40, 51]. This and

other research have contributed towards maximizing diversity and thereby minimizing coincident

failures and have led to favorable results in practical N-version applications [38-42, 51-52, 58-

59, 60-61, 67-72]. Further, there has been some helpful developments in the areas of modeling

and quantification of diversity and reliability in N-version systems [51, 61-65].

Knight and Leveson demonstrated that independent development of versions is not sufficient to

cause independence of failures [53]. Their study was important to N-version programming

because it motivated researchers to look more carefully at how to achieve diversity and quantify

its effect [38-42, 51-52, 58-59, 60-62, 67-72]. Many subsequent researchers misunderstood

 26

these results to be a definitive statement against N-version programming [63]; however this is

not the case [53]. Knight and Leveson warned that independence of failures, though

mathematically convenient in theoretical work, could not be assumed in reality [53]. As

Avizienis asserts however, independent failure is merely an ideological objective, and is not a

basis for, or even an assumption of, N-version programming [38, 58]. The presence of correlated

failures in no way destroys the feasibility of the N-version programming since coincident failures

will only cause system failure if a majority of versions are faulty [38]. Good quality control can

reduce the risk that so many modules are faulty significantly [38]. Additionally, researchers

have found that negatively correlated failures are possible and these may lead to even higher

reliability than simply independent failures [58, 61, 66]. Researchers, including Partridge and

Krzanowski, argue that negative correlation can be achieved by “forcing diversity;” that is, by

introducing artificial differences in such a way that the developers find different aspects of the

problem difficult and as such multiple versions are less likely to fail together [58, 61]. Knight

and Leveson themselves assert that neither they nor their results imply that N-version

programming does not work or should never be used [53].

N-version programming has been widely used for improving reliability and the resulting N-

version applications, in both research and industry, have produced favorable results in terms of

increased reliability [38, 57, 67-72, 52, 86]. Faults, expressed as significant disagreements

between modules, were discovered and tolerated in the applications created [38, 57, 59, 67-72,

86]. Although it is impossible to generalize from relatively few and specific experiments, this

does indicate that N-version programming improves reliability. In fact, more and more

researchers are establishing themselves as definitely in favor of n-version programming for

improving reliability, especially when the cost of failure is high [57, 67-72, 52]. As an

indication, an average reliability improvement of an n-version software unit over its single

version counterpart of up to a factor of 58 has been found in some practical applications [66].

The premise that the money spent in N-version programming could instead be spent on

developing a single version that is N times more reliable is false [59]. Experimental evidence

has corroborated the law of diminishing returns for debugging software - as programs become

more reliable, it becomes harder to find faults [59]. Similarly allocating more money and

 27

resources do not reduce the number of faults introduced into software after a point [37]. No

combination of quality assurance methods is perfect, thus even if enough money is spent to

acquire the best development and QA techniques, there are still likely to be faults embedded in

the resulting system [37]. This negates the argument that single version software should simply

be made “reliable enough.” Further, as mentioned in [41], N-version programming aims to

ensure that the system could recover, if the modules contain faults. Since it is the case that non-

trivial software must be expected to contain some faults despite best efforts to prevent this [37,

59, 60], a user should not believe that a single version will never fail simply because it has not

yet done so. In the case of such failure, N-version programming becomes a useful tool for

preventing system failure [41].

2.2 SAVE as N-version Software

The SAVE N-version system is carefully designed to achieve, as much as possible, significant

increase in reliability over single-version systems, according to the results and conclusions of the

major researchers in the N-version area [38, 53, 51, 62]. Implementations of the SAVE

architecture follow the advice and considerations of published N-version programming

methodologies [38-41, 62] very closely. Further, the SAVE system, by design, avoids many of

the diversity and reliability limiting factors [53] that have thus far been discovered.

Researchers hypothesize that programmers tend to make more faults on difficult problems or

subproblems, which may lead to multiple common failures across different modules for

particular inputs [41, 53, 61, 66]. The SAVE modules are intentionally functionally simple and

implementable in a few hundred lines of source code. In particular, each module’s functionality

is relatively simple, compared to the functionality described in the N-version experiments

reviewed [38, 57, 59, 67-72]. We thus expect fewer failures, and fewer common failures in

particular, in accordance with the hypothesized relationship between functional difficulty and

fault and failure production.

It has been asserted that the required reliability might be achieved, for systems of sufficient

quality, by using a larger value for N [53]. The relative simplicity of SAVE module functions

will make it relatively easy for implementers of a SAVE system to produce a large number of

 28

modules quickly. Further, SAVE’s communication protocol allows modules to be easily

distributed across many computers or processors, so that the computational work of many

modules can be managed. Both features facilitates a large value of N for the SAVE system and

the associated increase in reliability.

Traditional factors that tend to be correlated with failures [37], including large software size, as

measured by number of lines of code [53]. The modularity of the SAVE software as well as the

relatively small size of each module, as measured by lines of code, suggest that SAVE should be

able to generally avoid the coincident failures that are generally caused by those factors.

SAVE’s careful development adherence to established N-version programming methodologies as

well as its inherent features make us fairly certain that the SAVE system can derive maximum

benefit from the application of the N-version concept. With the use of N-version programming,

we believe that SAVE can achieve greater reliability and trustworthiness than current voting

systems [8, 13-14, 16].

 29

2.3 SAVE’s N-version Methodology and Concepts

N-version programming is similar to traditional software development, but features and

processes are added to combine individual modules into a fault-tolerant unit and maximize

diversity given development costs and other constraints [62]. The N-version Execution

Environment (NVX) is added and tasked with creating a fault tolerant N-version Software (NVS)

unit from the individual modules. Special restrictions are added to the functional specification

design to ensure that they do not limit diversity and that they facilitate the mediatory work done

by the NVX. Also, a special coordinating team (c-team) is established to ensure that maximum

diversity is injected into the modules and that this diversity is not reduced by communication

across module development teams. The c-team is also responsible for maintaining the overall

system’s quality. The key concepts, features and processes related to N-version programming

are discussed here.

2.3.1 Diversity

A fundamental conjecture of N-version programming is that the diversity across the modules will

greatly reduce the probability of identical software failures occurring in multiple modules at any

comparison point [38, 51]. Diversity may be incorporated into the software modules via: (1)

training, experience, and location of personnel; (2) algorithms and data structures; (3)

programming languages; (4) software development methods; (5) programming tools and

environments; (6) validation and verification methods and tools [38, 59, 62]. This diversity can

be applied at all stages of the N-version programming process, including at the design,

specification, implementation and testing stages.

The incorporated diversity may be random or may be forced. Random diversity is diversity

achieved in an uncontrolled manner, relying on dissimilarity between the individual’s training

and thinking processes to generate significant differences [38, 39]. Forced diversity, on the other

hand, is introduced in a deliberate, calculated manner [38, 40, 51]. At a basic level, forced

diversity involves locating points where diversity could be inserted into the modules directly or

into the software development process, determining the best diverse approaches that could be

applied at those points, and requiring that those approaches be uniformly distributed at random

amongst the software development teams. Forced diversity has been showed experimentally to

 30

be more effective than random diversity in reducing the correlation between software failures

[38, 58]. Further, it has been theorized that forced diversity could lead to negative correlation

between software failures; this is better than the uncorrelated failures that would be expected of

independence [41, 58].

A contribution of diversity to the N-version programming process is that the developers

implement very different approaches to the specification. With different initial implementation

choices, particularly when they are prescribed by forced diversity elements, the developers likely

face different problems, challenges and difficulties while implementing the modules [38, 41, 58].

Thus the developers of different modules are less likely to introduce the common software faults

which may lead to identical software failures during execution [38, 41, 58]. The amount of

diversity chosen is dependent on the costs and the funds available, the time constraints and

various deadlines for project progress and completion, and the required dependability of the

system [38, 62]. It has been suggested by Popov and Strigini that potential sources of system

failures should first be identified, and diversity chosen to best eliminate or remove the effect of

these sources, within the constraints mentioned [62]. The amount of diversity present in a

system is expected to vary from implementation to implementation, as different development

teams are used; however certifiable SAVE systems will have some minimum required diversity

associated with the collection of modules at each stage.

2.3.2 The N-version Execution Environment (NVX)

The N-version Execution Environment (NVX) is another fundamental of N-version

Programming. The NVX is the software and/or hardware component that manages the N

individual software modules, constructing an N-version Software Unit (NVS) from the inputs,

outputs and behavior of the individual modules. Specifically, the NVX is the execution

environment of the system, containing the set of functions that are needed to support the creation

of a fault-tolerant N-version Software Unit (NVS) from the concurrent execution of N member

modules. These functions can be applied to any set of software modules generated from any pre-

approved, pre-specified module functional specification (VS). SAVE features, such as mutually

distrusting software components, a distributable execution environment, and unreliable channel

communication, add special constraints to the NVX. In particular, the NVX must not transfer

 31

problems like hacks and viruses from one module to others, the NVX must maintain

authenticated addressing to locate all the modules under its control, the NVX must recognize that

the number of correct states that it compares might be less than the number of correct modules at

that stage because of channel corruption, and the NVX cannot assume that it is safe from attack.

For these and other reasons, the typical single NVX is not used in the SAVE system. A single

NVX is unable to provide the availability, correctness and trust assurances that our voting system

demands. We therefore use multiple NVXs, which meet the general NVX responsibilities

discussed here and also satisfy the special constraints of our SAVE system.

2.3.2.1 Diverse, Redundant NVX implementations

Software modules do not trust other software under SAVE’s trust model. Thus, no software is

given access to a software module’s memory or allowed to directly call one of a software

module’s functions. Also, the SAVE model allows software modules to be distributed across

different computers at different locations. Standardized XML message protocols were developed

to allow software modules to communicate with each other in the face of these constraints.

These message protocols were built over the authenticated SSL protocol for secrecy and

authentication. Note however, that the SAVE model allows for some unreliability in the

communication channels across which these XML messages are sent and this unreliability could

lead to message corruption. This relatively harsh environment is unsuited to traditional single

NVX models [38]. A single NVX’s decision may be severely compromised if its

communication channels are error prone so that many correct input messages are corrupted

before they are considered by the decision function. If too many correct input messages are

corrupted, a majority consensus would likely become impossible and the NVX would be unable

to elect an official input for use by the modules at future stages. This would be a critical failure

since the modules at all future stages would have no access to correct inputs and thus the system

would produce an incorrect result overall or be unable to return a result at all. The same type of

system failure could result if the NVX is itself malicious or faulty. A voting system must be

available and must be extremely reliable. Therefore steps must be taken to avoid such system

failures and prevent overdependence on a single NVX or any other piece of software. SAVE

removes the single point of failure of the typical NVX by including multiple, diverse NVXs in its

design. The SAVE system provides a functional specification (XS) for the NVX that is

 32

independently implemented within each module by the module developers. In this way, a

problem with the implementation of one NVX does not compromise the entire SAVE system.

Additionally, there is no single NVX to become the focus of hackers or malicious insiders.

2.3.2.2 NVX responsibilities

The NVX must support the N-version Software execution. Among other duties, the NVX must:

facilitate any necessary inter-version communication; manage any module synchronization and

enforce any timing constraints; provide and execute the decision algorithm(s) for electing

“likeliest correct” inputs; perform error-masking for each stage at the inter-stage comparison

points; execute any decision functions for error-correction or other treatment of faulty modules

and, in general, manage system correctness and efficiency [38].

 33

Inter-version communication

Figure 2.1: Generalization of SAVE communication network

Figure 2.1 depicts a generalization of the SAVE communication network. There are N modules

at each stage of the voting process and there are M major stages. Each module is both a server

and a client and can send, process, respond to and receive messages from other modules. Each

module has an identical directory, containing the addresses and functions of all the modules.

The directory is digitally signed on creation, so that any modifications to the file can be detected.

This prevents malicious alterations to the file and preserves its authenticity. The modules

manage their own communication with other modules. This communication is constrained to

XML messages, each of which has a specified format and results in a specified computation at

1 2 N

1 2 N

1 2 N

Stage 1

Stage 2

Stage 3

Stage M 2

comparison point

1 N

identical inputs

 34

the server module and, if specified, also results in the generation of a standard XML message

response.

The principle comparison points occur at the points between SAVE stages; outputs from one

stage are compared and their errors masked before they become the inputs to the next stage.

Modules therefore typically do not communicate with other modules at the same stage. Instead,

modules typically communicate their output to the NVXs of modules in the subsequent stage.

Each module decides, on its own, when to send its output – but typically does so as soon as it

completes its function. This relative independence is unlike traditional NVX models, where

module computation might be forcibly interrupted by external NVX implementations. Despite

this lack of interruption, each module knows that it must execute its function within a pre-

specified amount of time otherwise its output is ignored. Therefore system performance time is

constrained and some performance guarantees can be made.

Each module at a particular stage receives messages from any of the modules at the previous

stage, at random, until messages have been received from all modules or the waiting period has

ended. At this point, if possible, the module elects an official message from the ones it has

receives and operates on it; then sends the output randomly to modules at the next stage until it

has sent an output message to all the modules at the next stage. All communication between

modules occur in this format, with the exception of the witness modules, which perform no

election, but operate on each message they receive and respond directly to the module that sent

the message, and the User Interface modules which communicate with each other, at the same

stage, so that they can collectively elect what should be displayed to the voter.

Note that we must also assume that a large enough number of communication channels correctly

relay their message each round that a majority of correct messages are received by correctly

functioning modules in the receiving stage. This is necessary so that error-masking can occur at

the receiving stage and the receiving stage can thus recover from errors at previous stages.

The Decision Algorithm and Error Masking

Each module, n, implements the decision algorithm specified in the XS. The parameters of the

decision algorithm are extracted from the messages sent by the modules at the previous stage. In

 35

particular, the modules at the previous stage all send a specified XML message to module n.

That XML message indicates to the server module that a particular function should be executed,

and the contents of the XML tags in the message provide parameter values for the function to be

executed. Specified XML attribute and element values must be equivalent for the XML

messages to be considered equivalent. These attributes and elements constitute matching

features of that input. If the matching features in the XML messages provided by two modules

are the same, the XML messages are considered equivalent and their contents equally likely to be

the correct input to the server function to be executed. The decision algorithm is used to decide

which of the inputs to a function is “likeliest correct” before the function is applied. This

decision is based on the size of the largest consensus group among input XML messages. If the

largest consensus group has more than some k input XML members, then the matching features

that describe that consensus group are chosen by the decision algorithm to be “likeliest correct.”

k may be set, for example, as ⎡N/2⎤ where N is the number of modules in the previous stage, as

listed in the module address-book. For this value of k, a majority of the modules in the previous

stage would have to succeed in sending the same matching features in their XML message for

those matching features to be elected “likeliest correct.” If the size of largest consensus group is

less than or equal to k, no “likeliest correct” message is elected; the server does not perform any

further operations, in particular it does not execute the function indicated by the XML messages.

Otherwise, the relevant matching features from the elected consensus group is used as the input

to the server function to be executed. In this way, error-masking occurs before execution of the

server function; the function is applied only once, to the input deemed most likely to be correct.

The decision algorithm is executed only if enough input messages were received from the

previous stage to possibly constitute a consensus by the end of the waiting period. During its

wait period, each module collects as many inputs as possible from modules at the previous stage,

so that it can make the best possible choice of which input message is most likely to be correct.

Note that input messages that are incorrectly formatted or unauthenticated are immediately

discarded. Also, repeat related messages from the same client module are immediately

discarded.

Treatment of Faulty modules

 36

The SAVE NVX performs error-masking, but it does not seek to immediately correct or abandon

modules that provide an incorrect input message. The SAVE threat model allows channel

failure, and so a server module can not determine for certain whether the client module that sent

the incorrect message is corrupt or whether the client’s message was corrupted later, in the

communication channel. Correspondingly a client module that sends no output at all could be

faulty or its message could have been lost in the communication channel. If the client module

repeatedly sends incorrect messages, this increases the likelihood that the client module is itself

faulty, but still does not guarantee this. The server could arbitrarily ask the client to repeat itself,

and this could eventually prove that the client is capable of providing the right output. However

this still could not prove definitively that the client is, or is not, faulty or malicious. A series of

transient failures – or even permanent failure – within the channel, could make a correct module

look faulty, or a malicious module could provide incorrect results at first, and correct results later

as desired. Further, arbitrary requests would arbitrarily increase the number of messages passed

in the system, as well as the time until a decision can be made; none of this loss of efficiency is

desirable. Thus, the server simply notes client modules that repeatedly send incorrect messages

and may take steps to reduce their credibility.

 37

Version Synchronization and Timing Issues

Figure 2.2: SAVE cross check point

As is the case with many N-version systems, the SAVE system is semi-synchronized. Each

module compares the outputs of the modules from the previous stage and elects one such output

as the correct one, if possible. Figure 2.2 depicts the events that might occur at such a

comparison point. Each module must wait for more than k modules from the previous stage to

send a particular input message before it can perform the operation associated with that message.

The receiving module does not wait overlong for input from slow, corrupted or disconnected

modules, however the module must wait long enough to receive at least a majority of related

messages so that it can be sufficiently certain that a consensus was achieved. This tradeoff is

weighed carefully before deciding on an appropriate wait period for each stage of each

implementation of a SAVE system. The wait period specifies how long each server module

should wait for inputs at any particular round. The wait period begins only after some significant

fraction of the expected messages arrives. This prevents a few malicious modules at the previous

stage from sending messages exceedingly early to force the server module to exhaust its wait

period before receiving sufficient inputs. After the specified wait period, the module compares

the inputs it has received and elects, if possible, an official input from these as specified by the

decision algorithm. If no consensus input is discovered by the end of the maximum waiting

time, the module discards the related inputs it has received thus far and performs no computation

corrupt
slow

disconnect

 input election
 f()

1 2 N-1

x

N3

 38

on them. Since the module does not perform its function, it “fails” this round and, in particular,

sends no output to modules at the next stage.

All modules at the same stage perform the same function, though they are diversely

implemented. Additionally, the modules at the first stage all receive the same input message.

Therefore it is expected, by our assumptions, that all functioning modules in the previous stage

will eventually send along a message, Mi, or some variant of that message, which corresponds to

the original input message after it has been operated on at all the stages it passes through. Since

we assume that a majority of modules at each stage are correct, and that a sufficient majority of

channels are also correct, we can assume that there are not sufficient slow or faulty modules or

channels to delay a receiving module past its waiting period. That is, the expected time to

receipt of a consensus is well within the waiting period of the modules at each stage.

Each module at a stage must wait for some majority (k> ⎡N/2⎤) modules from the previous stage

to complete their operation and send outputs to the module. Each module at a stage decides on a

random recipient order before sending its output to the modules at the next stage; thus each

module at the next stage has the same chance of receiving a validating majority (ceil N/2) of

input messages during its waiting period. This also means that the modules are given a better

chance of completing their function near the same time and before the end of the specified time

allotted. Thus, the actions of the modules at each stage are typically loosely synchronized. Also,

because of the ability of the system to continue even if a minority of modules is disrupted at each

stage, we do not expect an entire stage to be slowed down by a few slow modules or channels.

Deadlocks are not possible because the unidirectional communication flow ensures that each

stage must wait only on stages before it, and that earlier stage operation happens first.

System Correctness and Efficiency

The NVX is responsible for managing the correctness and efficiency of the N-version software.

As such, the number of comparison points must be large enough that the correctness of the

system is sufficiently high, yet small enough that the system is not delayed too long by the time

used by the NVX to perform its computation. Each module is slowed somewhat by waiting to

collect its input messages and then comparing them. The extent of this delay is calculated and

 39

managed so that the probability of correctness of the elected matching features is sufficiently

high. In particular, the length of the wait period for new inputs at a module, and the return time

constraints of the modules at each stage is carefully optimized and planned. The actual times

would vary with the actual software specifications, the number of modules at each stage, the

number of stages in an execution of the system, the number of modules run per processor, the

network speeds, the extent of the distribution of the modules on different computers throughout

the network, and other such constraints.

2.3.3 N-version Software Development

At every stage of development, the needs and requirements of the N-version process must be

made to coincide with the needs and requirements of the software development process. In

particular, the N-version goal of diversity maximization must be targeted without overly

reducing the achievability of the traditional quality goals of software development. The N-

version programming process refines the nature of the functional specification and greatly

influences subsequent software development. Additionally, the N-version programming

paradigm directs the testing, deployment and maintenance of the N-version software developed.

Directing all aspects of the software creation as specified by the N-version paradigm [38] is

necessary to establish and maintain the diversity that is so critical to N-version software, while

maintaining software quality. We discuss additional constraints and modifications to traditional

software development.

2.3.3.1 Functional Specification

The functional specification is designed to meet user requirements and is generally the

introductory point for the N-version software implementers. We describe two sets of functional

specifications: the module specification (VS) which describes the functionality of the individual

software modules that will comprise the N-version software unit, and the N-version execution

environment specification (XS) which describes the functionality of the N-version execution

environment (NVX). It is critical that the specifications be as error-free as possible. This is

because experiments have shown that error in the specification is one of the predominant causes

of identical software failures across modules [53, 71, 61, 66]. It has been indicated

experimentally that formal specification languages, which offer verification of completeness and

 40

correctness, may help reduce the number of occurrences of specification faults and their related

software failures [38]. The specifications must also be written carefully to avoid unnecessary

constraints, examples, or other guidelines which may be followed by multiple developers and

thus reduce diversity across the modules [38]. The specifications set the baseline for the

diversity and functional equivalence of the software that will be implemented from them.

The N-version execution environment specification must be developed in conjunction with the

module specification as the interaction between the NVX and the software modules is critical to

the N-version software unit. Care must therefore be taken to optimize their interaction by

specifying the interface points, parameters and behaviors most likely to lead to correct and

efficient execution of the N-version software. With SAVE, the NVX functionality and thus

specification is integrated with that of the software modules. Thus the simultaneous mutual

specification generation is inherent in our design.

The state to be compared at each comparison point must be made explicit in the functional

specification (VS) of the software modules and also in the functional specification of the NVX

(XS). Each of the NVX implementations in a stage must have the same set of comparison points

and matching features, so that the NVX can support the output of all software modules from the

previous stage, regardless of the non-functional ways in which it differs from other modules.

Conversely, the VS must explicitly state the same comparison points and matching features as

the XS so that the software modules can provide the data that the NVXs expect to find in the

XML messages. The XS must specify the same compare method and decision algorithm for all

NVXs at the same stage so that the definition of correctness can be consistently maintained and

enforced. The number of comparison points and the amount of state required to match at each

point must also be carefully considered. While a large number of comparison points and a large

matching features set enhances error detection and recovery, extensive common constraints such

as these may limit diversity [38].

Multiple distinct specifications, derived from the same set of user requirements, may also be

designed and deployed, perhaps in different specification languages or using effects on different

properties to describe the same functional behavior [38, 59, 62]. Multiple specifications would

 41

increase the cost of the system as they require independent designers and must be rigorously

tested to ensure that they are equivalent [38]. However, diverse specifications are theoretically

expected to increase software diversity and also mitigate the impact of single specification error

on software failures, and identical failures in particular [59, 62].

2.3.3.2 The Coordinating Team (c-team)

Correct specification is crucial to the success of NVS software. However software

implementation, testing and maintenance must also be guided by the N-version paradigm to

maintain diversity and prevent similar faults from being introduced into the software. Software

development is similar to traditional methods from the perspective of each development team.

However strict guidelines must be implemented and followed to maintain diversity; the creation,

implementation and maintenance of these guidelines are the main task of the N-version

coordinating team (c-team). The c-team is responsible for managing the general isolation of the

development teams as well as the limited communication that these development teams are

allowed, in such a way as to maximize the diversity of the resulting software modules. In

addition to looking after the diversity needs of the N-version software, the c-team maximizes

software quality by managing the functional specifications, as well as the progress - in terms of

source code as well as documentation and test sets - of all module development teams and of the

system overall.

Careful isolation and independence of software developers and their software is important to

ensure that similar ideas and techniques do not spread across development teams and their

modules [38, 40, 51]. Potential “fault leak” links along which such similarity may spread

include casual conversations or mail exchanges between developers, common flaws in training

or manuals, use of the same development tools like compilers [38]. In general, communication

between development teams is strictly limited, if allowed at all, to prevent the permeation of

ideas that would limit diversity. Communication between the c-team and the development teams

are carefully structured to prevent the c-team from unduly influencing the development teams

and from inadvertently spreading ideas from one development team to another thus limiting

diversity. The c-team is tasked with identifying and avoiding the potential fault leaks that may

arise through such communication. Several measures are taken to help reduce the risk of

 42

inadvertent communication that may reduce diversity. These include clear expression and

enforcement of the rules of isolation and their purpose; physical isolation of the developers, such

as separate working spaces and separate computers for software development; as well as

authentication-schemes and access control lists for each module’s software and other files [38].

Isolation and independence, while important, must however be balanced with avenues for

feedback, questions and error, bug or general problem reporting. Such communication is vital

for the module developer and cannot be ignored if quality modules are to be developed. The c-

team is responsible for creating and maintaining the communication protocol. This includes

setting up the communication infrastructure, tackling such issues as which email or other

addresses or phone numbers are to be used for communication; what format the communication

should take and what are the time lines for responses; as well as what hardware, software or

other materials or assistance is needed to create, dispatch and receive communications. The c-

team must then decide whether and how to respond to each query and whether a response should

be made just to the development team making the query or whether it should be a broadcast to all

teams. Queries may include comments, bug reports, or questions regarding the specification or

other issues such as funding or deadlines. All queries and communications, as well as all source

code, documentation and other files, are carefully monitored so as to maximize the realized

diversity and trace the progression of ideas in the system so that diversity reducing information

leaks can be detected and, if possible, corrected. All members of the c-team must be aware of all

correspondence and a significant group of them must agree on each communication they send

out or other action to prevent corruption at this level.

The c-team cannot be disbanded as soon as the N-version software unit is compiled however.

Diversity must be monitored, and added where possible, throughout the testing and maintenance

of the N-version software. Diverse testing and maintenance methodologies can contribute to this

as different schemes tend to have different focuses and are unlikely to detect, solve or create the

same problems [62]. For example, "operational" testing tends to find faults with higher

contributions to unreliability first, as these are the faults that produce operational failures

quickly, but "coverage" testing is not biased in this way and is thus likely to have a different fault

discovery distribution [62]. Additionally, testing and maintenance methods that tend to reduce

 43

diversity, such as back-to-back testing, should be used carefully [62]. Regardless of the

methodology that is used, faults detected by the testing teams must be specified clearly, without

diversity reducing suggestions, and fixes to different modules must be implemented

independently. Similarly the software’s upkeep throughout its lifetime must be carried out by

independent maintenance teams who follow the N-version programming processes for isolation,

monitoring and restricted communication. Adhering to the N-version development paradigm is

necessary to prevent the modules from becoming more and more similar over time and thus

destroying the system’s diversity.

Though the c-team’s responsibilities are many and complex, it should be observed that, from the

perspective of the developer, the relationship with the c-team closely approximates the

traditional relationship with the specification team and the project management team.

 44

Chapter 3

SAVE - A Secure Architecture for Voting Electronically

The SAVE N-version system is a redundant, distributed architecture for voting electronically.

The SAVE architecture consists of redundant and diverse modules arranged in a distributed

execution environment, such that it is unlikely that a significant number of modules will fail in a

way that results in an overall incorrect output. A key aim driving the SAVE Architecture is the

elimination of single points of failure. No component, human or software, is completely trusted

and this is true at all stages of the development and execution process. Further, as an N-version

system, all components are selected and specified so that the likelihood of similar errors are

minimized. In particular, software is implemented independently by different programmers

using different programming languages, compilers and tools. Also, the system is installed across

different computers, using different hardware, software and operating systems, so that common

flaws in the underlying machinery can be avoided. Thus the system will continue to function

correctly, even if there are failures at a minority of components at each stage, because minority

disagreements can be masked and need not corrupt the output of the stage. The system is

therefore more reliable than comparable single version systems, which have no means of error

detection and masking.

The SAVE system is run from a trusted computing base, like that specified by the Trusted

Computing Group [73], which provides secure private storage, process isolation and attestation.

These features allow each SAVE module to prove its own identity and protect its secrets

including its private key and data. Attestation of each module allows other modules to be

relatively secure in their expectations about the module’s function as well as in their grants of

protected bits of knowledge to the module. This is necessary for correct and verifiable SAVE

operation.

 45

3.1 SAVE Components

Figure 3.1: SAVE System

There are six main types of Modules, each responsible for performing some part of the voting

system’s function. Figure 3.1 depicts the relationship of these modules within the SAVE system.

The Ballot Request Module uses information about the precinct and the election to request a

suitable ballot and HAVA [74] compliant user interface display specification from designated

ballot servers. The User Interface Module is responsible for displaying all screens necessary to

inform the voter and facilitate voter input. The Listener Module’s task is to capture voter input

from the User Interface display, and transmit the collected information to all relevant parts of the

system. The Registration Module is responsible for attesting valid voters and their ballots

while rejecting invalid voters. The Witness Module creates an auditable and secure record of

each vote. Finally, the Aggregator Module is responsible for establishing the vote recorded by

the system for each ballot cast, and securely transmitting that anonymous, completed ballot to

any applicable third party storage. The Aggregator Modules may also establish an actual

outcome for the election.

Voting Machine

Ballot Request 2
User Interface

Listener 1

Ballot Request n

Listener n

Registration 1 Registration n

Witness 1

Witness n

Aggregator 1 Aggregator n

Ballot Request 1

Listener 2

Registration 2 Witness 2

Aggregator 2

Registration i

 46

3.1.1 Ballot Request Module

The Ballot Request Module is a simple, but important Module, responsible for requesting the

blank ballot and user interface display specification for its associated voting machine. The

HAVA [74] compliant user interface display specification specifies the style in which instances

of the ballot should be displayed at the User Interface. Each user interface display specification

is carefully designed to best accommodate the special needs that some voters may have. Further,

the user interface display specification is designed to satisfy any usability restrictions imposed by

the jurisdiction in which the voting machine is being operated. The Ballot Request Module uses

the election and precinct information, provided to the voting machine, to request the ballot and

user interface display specification from designated ballot servers. Both the Ballot Request

Module and the ballot server are authenticated, using their public keys, before the ballot and user

interface display specification are transferred.

3.1.2 User Interface Module

The User Interface is vital to any voting architecture. The relatively poor user interface

historically provided by paper ballots has caused confidential ballot casting to be inaccessible to

many voters with disabilities [5]. Additionally, user interface problems are arguably responsible

for most of the spoilt ballots that are generated during elections [2-3, 7]. The modularity of the

SAVE design is particularly useful and appropriate at the user interface because it allows the

Module to be updated easily. Another advantage of the SAVE architecture is that the User

Interface Module completely separates content from presentation style. Thus the same ballot can

be presented in the best style available for a voter, without having to recertify software,

reinitialize voting machines, or undergo any of the lengthy and cumbersome processes that

would be necessary in monolithic systems.

The SAVE User Interface Module is responsible for communicating relevant information to the

voter in the most accessible way possible [74, 5], so that the voter is able to understand, and

contribute accurately to, the entire voting process. Specifically, the User Interface Module is

responsible for prompting the voter for relevant input and generally guiding voter interaction

with the system. On initialization of a voting machine, the associated User Interface receives,

 47

from the designated ballot servers, independent copies of the blank ballot and the user interface

display specification that will be used for the election. The official blank ballot and user

interface display specification is elected from these inputs. The elected input is used by that

voting machine throughout the election. The User Interface Module will generate a unique

instance of the official blank ballot, for each voter that interacts with that voting machine during

the election. The blank ballot is displayed or otherwise communicated to voters, as specified by

the user interface display specification.

The User Interface Module must also facilitate ballot completion. The User Interface Module

ensures that the mechanism by which the voter makes her selections and submits them is clear

and obvious. Additionally, the User Interface Module must ensure that the user is informed if

her ballot is not cast, for example because the Registration Modules have determined that the

user is not eligible to vote. The User Interface Module is also responsible for facilitating user

verification of the ballot the system has received, before it is officially cast, as well as user

correction of that ballot, including obtaining a new blank ballot as per section 301 (a)(1)(A) of

HAVA [74]. The User Interface receives versions of the ballots tentatively stored by the

Aggregator Modules and chooses an official ballot from among them. The official ballot

represents the ballot that the system believes the user intends to cast, as interpreted by the

Aggregator Modules. The User Interface displays this ballot and allows the voter to indicate

whether or not it is correct. If the voter verifies that the displayed ballot is correct, this approval

is relayed to the system and the ballot is cast. If the voter indicates that the displayed ballot is

incorrect, the User Interface asks the voter to indicate whether she would like to begin the

process again, with a new blank ballot, and displays that new ballot if requested. In this way the

SAVE system provides voter verification as well as second-chance voting as required under

HAVA [74].

A single User Interface Module is not allowed to decide which content is displayed to the voter;

this would be a critical point of failure. Instead, each User Interface module must communicate

with the others so that they can collectively agree on the content that should be displayed. The

collective agreement is done based on one of the typical distributed consensus algorithm chosen

by the developers [75]. More than some specified majority of User Interface modules must sign

 48

the agreed-upon content to indicate their agreement, before that content is displayed to the user.

Though it has not yet been implemented, we intend to implement a system that can detect display

errors. For example, we might implement a system of multiple diverse display driver monitors

that would analyze the display to make sure that what is displayed is actually what was elected

for display by the User Interface modules. Then, if more than some specified majority of driver

monitors indicate that the display is incorrect, we would announce that there is a problem with

the driver or display and steps can be taken to, for example, abandon the use of that voting

machine. We plan to add redundant drivers in the future as we seek to increase the redundancy

at lower levels of the system, including the operating system and hardware levels. Unfortunately

there is currently no way to correct a problem with the single display, but this system is still an

improvement over systems with no error masking. Display errors, like content or format errors,

can be detected with high probability, according to the N-version model.

3.1.4 Listener Module

The Listener Module listens for user activity at the machine’s I/O interfaces, captures all user

input, and sends the user input to all relevant parts of the system. The Listener Module’s first

duty is to capture the ballot selections the voter makes. When the Listener Module captures a

voter's filled-in ballot, it must next verify that the registration token presented by the user is

authentic and meant for use at the precinct in which the voting machine operates. The token’s

content is digitally signed by its manufacturers and certifiers, and this signature is verified.

Additionally, the election id and precinct id provided on the token is checked to make sure that it

is consistent with the election and precinct id that was provided to the voting machine on

initialization. This ensures that the voter is at the correct precinct and will vote in the correct

election. Once the token is authenticated, the Listener Module extracts the user’s encrypted

identifying information from it. Note that the user’s identifying information is encrypted with

the public keys of the Registration Modules. This precaution ensures that the Listener Module

does not have access to both the clear-text completed ballot and the voter’s identity; therefore the

Listener Module is unable to create a receipt. The Listener Module encrypts the completed XML

ballot using the public keys of the Aggregator Modules and sends this, along with the encrypted

voter registration id information, to the Registration Modules for further processing. The

 49

Registration Modules check to see whether the voter is valid and, if the voter is authorized, they

send the ballot along for further processing.

When the User Interface Module presents a validated ballot to the voter for verification, the

Listener Module is responsible for communicating to the rest of the system whether the voter

confirms that the presented ballot is completed as intended, or reports an error. If the voter

verifies that the ballot displayed is what was intended, the Listener Module communicates this

approval to the Aggregator Modules, which then officially acknowledge and store the ballot.

The Listener Module also communicates this approval to the Registration Modules so that they

can record that the voter has completed her interaction with the system. If however, the ballot is

not what the voter intended to cast, the Listener Module captures the type of error indicated by

the voter, and sends the report to be stored for audit purposes. The possible errors are human

error due to mistakes by the voter or system error. The Listener Module sends the faulty ballot,

along with indication of its faulty status, to the Aggregator Modules so that they can invalidate

the faulty ballot. If the voter requests a new ballot, the Listener Module relays this request to the

User Interface Module.

3.1.5 Registration Module

The Registration Module has access to the roster of all registered voters and manages the

registration data and check-in procedures for the election. The Registration Module receives

versions of the encrypted ballot and voter identification information as input from Listener

Modules. The Registration Module selects an official version, and examines the voter

identification information from that version to see whether the voter is valid. If the voter is valid

the Registration Module signs the elected encrypted ballot. A valid voter minimally is listed in

the registration roster and has not already cast a valid ballot in the election at the time when the

check is performed. The Registration Module relies on the Listener Modules to relay when the

voter has cast her vote by approving a ballot presented for voter-verification. The Registration

Module is also responsible for checking that any other requirement for validity is fulfilled before

authorizing the voter and signing the ballot. The Registration Module’s signature represents its

attestation that the voter was authorized to vote and that the ballot was valid, at the time of

signing. Once the voter is authorized, the voter’s registration id and any other identifying

 50

information are completely severed from any association with the encrypted ballot. If the

authorized voter has not yet been entered into the check-in database, the Registration Module

checks-in the voter by making an entry in the check-in database. This is necessary only on the

voter’s first attempt to cast a ballot, as the Registration Module would not have previously

encountered that voter

Only the encrypted ballot, devoid of any voter identifying information, is sent further into the

system for processing. The Registration Module sends the encrypted ballot and its digital

signature to the Witness Modules. Each Witness Module checks the Registration Module’s

signature and, only if the signature is valid, responds to the Registration Module with its own

Witness signature. When the Witnesses return their signatures, the Registration Module appends

their signatures to the encrypted ballot. Finally, the encrypted ballot and all appended signatures

are sent to the Aggregator Modules. As indicated, the Aggregator Module receives no voter

identifying information.

If the voter approves a completed ballot presented to him for verification, then the Registration

Module receives notice from the Listener Modules, containing the voter’s identifying

information – encrypted with the Registration Module’s public key – and a confirmation that the

voter should be finalized. If a more than some specified majority of Listener’s claim that a

particular voter should be finalized, the Registration Module records that voter as “finalized” in

its databases, and the voter is no longer able to vote.

3.1.6 Witness Module

The Witness Module is a simple Module that takes as input a signed encrypted ballot from a

Registration Module, attempts to verify that the signature indeed belongs to the sender

Registration Module and, if successful, hashes the encrypted ballot and produces a digital

signature using its private key. Witnesses do not maintain a record of the ballots coming through

them, as they are meant to be lightweight implementations. The Witness Module signs the

encrypted ballot to attest that the ballot, as well as the voter who cast it, have been deemed valid

by a Registration Module. More than some specified majority of Witness Modules must sign

every ballot in order for the ballot to be deemed valid. Thus the Witness Module provides

 51

additional verifiability, if the Registration module later becomes corrupted for example. Witness

Modules may be provided by independent organizations such as political parties and watchdog

organizations. Witness modules would then help increase the trust that those organizations place

in SAVE.

3.1.7 Aggregator Module

The Aggregator Module has the important task of making the final decision about which ballots

should potentially be counted. The Aggregator Module receives encrypted ballot packages from

Registration Modules. Each encrypted ballot package contains an encrypted ballot, as well as the

Registration Module signature and Witness Module signatures of the encrypted ballot. The

Aggregator Module selects the encrypted ballot that occurs an absolute majority of times among

these ballot packages as the potentially official encrypted ballot. All the encrypted ballot

packages containing that encrypted ballot are collected and examined to determine whether or

not the ballot should be accepted and tentatively stored. The ballot is accepted if set thresholds

of Registration Module signatures and Witness signatures are valid. The thresholds must be such

that the Aggregator ensures that there are valid signatures for at least a majority of the

Registration Modules and Witness Modules listed in the Aggregator’s copy of the directory. If

the ballot is deemed valid, the Aggregator Module decrypts the ballot, parses the plain text of the

ballot and tentatively records the selections. Those selections represent the vote tentatively

recorded by the system for that voter

At this point, the Aggregator Module must send the ballot back to the User Interface so that the

voter can verify the vote, recast the vote, or cancel the voting process as necessary. This feature

is required for the SAVE system to be HAVA compliant [74]. To ensure that the ballot

presented to the voter is indeed the ballot that would be stored, the Aggregator Module queries

its own storage for the relevant selections and reconstructs the ballot from this information. The

reconstructed ballot is then encrypted with the User Interface Module’s public key and sent to

the User Interface Module. The Listener Modules would then capture the voter’s response to the

presented ballot and relay this response to the Aggregator Module along with the ballot itself,

again encrypted with the Aggregator Module’s public key. The Aggregator elects one of the

Listener messages as the official input. If the official input indicates that the voter has rejected

 52

the ballot, the Aggregator Module discards the ballot and rolls back its tentative storage of the

corresponding selections. If the official input indicates that the voter approved of the ballot and

the ballot attached is identical to the ballot that that Aggregator Module sent out, then the

tentative storage is committed. Additionally, both the encrypted and plain text versions of the

ballot are transmitted to designated authenticated counting or storage servers as well as stored in

the SAVE system’s read-only repository for auditing purposes.

3.2 SAVE Architecture

The SAVE Architecture is designed to be both complete and viable, so that it is directly usable

for practical purposes. We now list the assumptions that SAVE depends on, and analyze the

SAVE system given these assumptions.

3.2.1 Design Assumptions

A major assumption made is the N-version assumption that, for an N-version system, it is highly

unlikely that most of the redundant versions of a link or module will fail in the same way in any

particular situation. Given this assumption, it is likely that the majority of modules are correct if

they all return the same result. Given this, SAVE can achieve greater availability, correctness

and security than single version systems, because a few faulty modules or links are not enough to

affect the overall result. This robustness has both reliability and security implications because

the corrected faults may be due to errors, external hacks or malicious programming.

The SAVE system also assumes that a trusted computing base, such as that specified by the

Trusted Computing Group [73], can be securely implemented and used in reality. This

assumption allows the SAVE modules to depend on the TCB to provide secure private storage,

process isolation and attestation. Because of these features, modules can confidently declare

their identity and keep their identity safe from fraud, and can also protect their secrets, including

their private keys and the sensitive data that they operate on. Maintaining module identity and

secrets are crucial to the operation of the SAVE system.

Additionally, the SAVE system assumes that external parts of the voting process are correct and

secure. This includes the assumption that the registration database is correct, as well as the

 53

assumption that the registration tokens have been delivered safely to voters and have not been

stolen.

SAVE also assumes that it can detect whether a malicious module is capable of sending

messages to other modules that contain stage secrets. We assume that no such malicious module

becomes certified. Thus we assume that vertical collusion involving the exchange of secrets

within messages does not occur during SAVE execution.

SAVE assumes that cryptographic systems are hard to break. We base our confidence in the

attestability of our modules and the secrecy of our messages, for example, on this assumption.

 54

3.2.2 The Extent of Redundancy

It is useful to consider just how much of SAVE is redundant and where the limitations are. The

voting machine typically has single I/O devices, and this is important for providing a simple,

familiar user interface for voters. For example, there is a single keyboard and single display

screen. We are able to detect errors with these, however, by using a combination of driver

monitors and user verification. Additionally, if an error is detected with the screen or keyboard,

it may be possible to exchange these devices for other, certified replacements. Currently, the

voting machine’s software is not redundant, except for the voting modules described previously.

Many software errors here would not be detectable under the current conditions. Future work

will involve creating a redundant trusted computing base that could eliminate more of these

points of failure.

Note that the SAVE system is capable of counting ballots and presenting an election result,

however this is not part of the typical SAVE function. Thus one need not be concerned about the

single point of failure that would potentially arise from the reporting of such a result. The ballots

are stored independently in diverse and separated Aggregator modules, and counts may be

extracted simultaneously from all the Aggregators, with as many observers as desired. In this

way, the ballot storage, and resulting election result calculation, need not be a single point of

failure.

3.2.3 System Initialization

Poor system initialization can make it impossible for a system to function accurately or securely.

As such, correct system initialization is very important. A major component of SAVE

initialization is establishing each module’s critical data. A SAVE module’s critical data consists

primarily of its private key and its directory of other authentic SAVE modules and their

corresponding functions, addresses and public keys. The directory’s correctness and authenticity

is essential to system integrity. The directory contains no secrets, so directory exposure is not

critical. However, it is important to minimize the likelihood that the eventual directory is

corrupted, by being flooded with fraudulent module descriptions for example. Such fraudulent

 55

modules reduce the reliability of the system, and could cause even more damage, by using their

access to the system to launch attacks.

Modules cannot construct their directories for themselves. This is because software cannot trust

remote software, communicating through XML messages, without some sort of authentication,

such as a signature that proves current possession of some pre-determined secret. Without such a

proof, any remote interaction sequence is forgeable. However, if a signature is used, the public

key must be known to the distrusting software. There must be some root-of-trust that provides

the first public keys to the distrusting software. To avoid placing our trust in few external roots-

of-trust which we do not know very well, we create our own root-of-trust consisting of any

suitably sized subset of N human principles. The public keys of these human principles are

known to all modules and the modules will trust any majority of them. Modules that have been

deemed correct and have been designated for inclusion in the final SAVE system have

“approval” certificates to this effect, signed with the private keys of these trusted human

principles. The authenticity of a module and its messages is attested by the Trusted Computing

Base, which knows the module by its source code and public keys. These human principles also

independently verify and endorse special Directory Generation (DirG) modules, whose function

is to collect the public keys, function, and other information associated with each module and

compiling that information into a directory. Each endorsement takes the form of a signed

certificate containing that Directory Generation module’s public key.

Each SAVE module contributes its own information to the generation of the collective directory.

When a SAVE module is started for the first time, it generates its private keys and reports the

corresponding public keys to the Directory Generation modules that a majority of human

principles have collectively told it about. If the SAVE module can prove that it has been granted

an “approval” certificate, and the DirG module can prove that it has also been endorsed, the

module presents its directory information to the DirG module and the DirG module approves the

SAVE module and its information. A DirG module approves a SAVE module by generating a

certificate, if none exists, which includes that DirG’s signature of the module’s public keys and

other information, or by adding it’s signature of the module’s public keys and information to the

already existing “directory” certificate. A “directory” certificate is deemed valid once it contains

 56

signatures from more than some specified majority of DirG module signatories. In addition to

reporting public keys, each module may also report, for example, its host and ports the module

wishes to associate with itself. A DirG module tests such ports by sending “proof-of-

association” requests to the claimed ports. To verify association with that port, the module must

respond to a “proof-of-association” challenge with a live signed message which contains the

challenge and an appended time stamp.

The DirG modules then compare the directory information they have collected and merge their

collections into a single address-book. Any typical distributed consensus algorithm may used

[75]. Note that only information that was independently collected by more than some specified

majority of DirG modules is included in the official directory. This prevents fraudulent or faulty

DirG modules from including modules, or module information that should not be included. Note

that the DirG modules gain very little secret information, even if they are fraudulent, because

each module uses fresh keys for its proofs and interactions with the DirG modules; these keys are

attested by the TCB. The official directory is digitally signed by all the DirG modules that have

agreed to it, so that it cannot be modified without detection, and then distributed to the SAVE

modules listed in the directory.

3.2.4 The Voting Process

The voter’s interaction with the system begins when the voter receives a registration token by

secure mail. This token contains the precinct id of the precinct that the voter is registered to vote

at, the election id of the election that the voter is registered to vote in, as well as encrypted voter

registration information. The token may be, for example, a read-only, copy-resistant compact

disc. When the voter arrives at the polling station, a poll worker verifies that the voter is who

she claims to be and that the registration token is valid and is associated with that voter’s

identity. If the voter is valid, the person is allowed to enter a polling booth with the registration

token. There are further schemes available to reduce the opportunity for fraud with regards to

the token. These include sending only part of the voter’s token by secure mail, and having the

voter collect the other part at the polling station, after proving his or her identity. The parts are

fragmented so that the information on each part is unusable unless it is combined with the other.

 57

This scheme would however increase the inconvenience faced by the voter and the

administrative difficulties faced by the poll workers.

On startup, each voting machine requests a blank ballot and interface definition from ballot

servers, through its Ballot Request modules. The ballot servers only service these requests

during the official voting period. The voting machine then awaits the arrival of voters. The

voting process depicted in Figure 3.2 is carried out for each voter.

Figure 3.2: Voting Process
When a voter places his registration token into the voting machine running SAVE, the User

Interface module displays an instance of the blank ballot to the voter. The instance is

distinguishable from other instances by a ballot id generated by the User Interface module. The

voter makes his desired selections on the ballot, submits the ballot and waits to verify the ballot

User Interface

Witness

External Storage
or Counter

1

2

3

4

5

6?

Listener

6?

8

E(b)Agg, E(id)Reg

E(b)Agg, S(E(b)A)Reg

E(b)Agg, S(E(b)A)Wit

E(b)Agg, S(E(b)A)Reg, S(E(b)A)Wit …

E(b)UI

E(b)Agg, invalid

E(b)

E(id)Reg, finalize

Registration

Aggregator

 58

actually recorded by the system. The completed ballot is compiled and encrypted by Listener

modules, and the encrypted data is sent to the Registration module along with the voter’s

encrypted registration information as extracted from the registration token. Once the ballot is

encrypted, its processing is mingled with the processing of other ballots, from other User

Interface modules on other voting machines. Only the User Interface, Listener and Ballot

Request modules need reside on the voting machine; other modules are distributed among other

connected but distinct computers.

Each Registration module receives messages from Listener modules. Each such message

contains encrypted voter registration information and the separately encrypted secret ballot. The

Registration module elects an official message from these. The Registration module then

decrypts the voter’s registration information contained in the official message and checks that the

voter is authorized to vote and has not yet cast a valid ballot. If this is the case, the Registration

module checks-in the voter, if the voter has not yet been checked-in, and signs the encrypted

ballot. The Registration module then sends the encrypted ballot and signature off to Witness

modules to be digitally signed. Finally, the Registration module sends the encrypted ballot and

all signatures to the Aggregator module. The Registration module never knows the contents of

the encrypted ballot, since it is encrypted with an Aggregator module’s public key.

Each Aggregator module determines the validity of the encrypted ballots it receives based on the

proportion of valid signatures appended to that ballot. If the ballot is deemed valid, it is

decrypted and both the encrypted ballot and the voter’s selections as expressed in clear-text

version of the ballot are tentatively stored in the Aggregator module’s database. To facilitate

complete voter verification, the Aggregator module then extracts the voter’s selections from the

database and recompiles them into an XML ballot. This reconstituted ballot is encrypted with

the User Interface module’s public key and sent to the User Interface. In this way, the ballot that

the user verifies is exactly the ballot that would be cast by the system; errors at any level of the

system, including at the database level, will be detected.

The ballot tentatively stored by the system is presented to the voter. The voter may indicate that

the displayed ballot is correct. In this case, the Listener modules relay the approval to the

 59

Aggregator modules, who permanently store the ballot, and the Registration modules, who

record that the voter has completed voting. The voter’s approval at this stage ends the voter’s

interaction with the system; the vote is officially cast. The voter may alternatively indicate that

the displayed ballot is not the ballot that the voter intended to cast, that is, indicate that either the

voter made a mistake or that there was an error in the system. If the voter indicates that the

displayed ballot is not what was intended, the Listener modules relay this disapproval to the

Aggregator modules who rollback their tentative ballot storage and discard the ballot. The type

of error, as perceived and indicated by the voter, as well as the faulty ballots may be stored for

audit purposes. If the voter indicates that there was a problem with the ballot, the voter may

terminate the voting process without voting, or may request a new blank ballot. If the voter

chooses to terminate the voting process, the voter’s interaction with the system ends. On the

other hand, if the voter requests a new ballot, the Listeners relay this request to the User Interface

module and the voting process is repeated.

3.2.5 Audit Trails & Recounting

For each ballot cast, the n Aggregator modules store the original ballot package, including the

encrypted ballot and digital signatures, as well as the clear-text of the ballot on read-only media.

Additionally, this data may be stored on authenticated, external read-only storage set aside for

maintaining audits. The ballot packages are stored on different computers by different

Aggregator modules. Thus it is expected that there will be a majority of accurate, signed (and

thus non-modifiable) electronic copies of each ballot cast, excluding those stored at faulty

storage or by faulty or malicious Aggregator modules. When an official audit is requested, the

audit common to the absolute majority of storage devices is chosen, if such a majority exists.

Consequently, the errors of a few will not affect the resulting official audit ballot. This form of

auditing is highly robust because it can withstand attacks, errors or losses at many of the

Aggregator modules or storage points, while maintaining the validity of the result. Conversely, a

single-version paper audit would not be able to withstand such failures; if such a failure was to

occur, the audit trail would be completely lost. Additionally, this form of electronic auditing is

verifiable because the state that led to the Aggregator modules final approval of the ballot, i.e.

the digital signatures of the Registration and Witness modules, are also stored. Assuming that no

registration tokens are stolen, it is impossible to cast a fraudulent ballot without corrupting a

 60

majority of Registration modules. Further, the Registration and Witness modules responsible for

certifying each ballot can be traced from their digital signatures and investigated if necessary.

With electronic ballot verification, we can communicate the ballot that the system has stored for

a voter in ways that are accessible to all persons, regardless of language or disability. So, after

ballot verification by the voter, it is exceedingly likely that the electronic ballot stored as an audit

is what the voter intended. This is not the case with paper verification, which many disabled

voters would be unable to interpret on their own. Additionally, there are no transport costs

associated with storing or accumulating the audit trails. Counting or other checks on the audits

can be done quickly and efficiently using software. Further, the accuracy and reliability of these

audit checks are greatly improved by the use of N-version software, as opposed to single-version

software or manual checks.

True recounting is possible with these audit trails. The count can actually be redone, rather than

just re-reported, because each ballot is stored individually. We have the actual selections that

each voter made, so we can recount the ballots in a number of ways: including passing the

encrypted ballots and their associated signatures back through our SAVE counting system or

through another diverse implementation of the SAVE counting system or hand-counting the

actual selections made on each ballot, as reported by a majority of Aggregator modules.

3.2.6 HAVA Act compliancy

The Save Architecture complies with the Help America Vote Act (HAVA) of 2002 [74].

Multimedia communication is used to ensure that the system is accessible to all voters,

regardless of their language or special needs, in such a way that the voter’s entire voting

experience is private and independent and the voter’s ballot is confidential. Also, the voter is

provided with the opportunity and the information needed to verify and correct his ballot before

the ballot is cast. In particular: the voter is allowed to modify his selections on his existing ballot

at any time before it is entered into the system; the voter is allowed to verify the exact ballot that

will be cast, after it has passed through the system; and the voter is allowed to void any ballot

that has not yet been cast and receive a new ballot for a “second chance” at voting. The User

Interface also restricts the errors that the voter can make by preventing overvoting. Each ballot

and its related signatures are stored and can be used as electronic audit trails or printed as paper

 61

audit trails. The error rate of the SAVE system is measured and will be made to comply with the

error rates standards issued by the Federal Election Commission. Also, the Aggregators are able

to incorporate any standard definition of what constitutes a vote in its decision on whether each

ballot is valid.

3.3 SAVE Security Features

The SAVE system is centered on redundancy and diversity. These principles also contribute to

the security of the SAVE system. While there has been some application of diversity and

redundancy to security [76, 80], our system, as an N-version voting architecture, is one of the

first voting systems to use it so fundamentally and extensively. There is some cryptography

involved in keeping SAVE safe from attacks. In particular signing and verification of digital

signatures for authentication, as well as encryption for confidentiality play critical roles in SAVE

security. However SAVE relies much less on cryptography than other voting schemes [28-32].

Reduced reliance on cryptography and complex algorithms make SAVE simpler to implement

and review, which in turn reduces the likelihood of bugs and increases the likelihood that bugs

and maliciousness can be detected. The modularity of SAVE allows the system to take

advantage of a combination of methods for review that establishes system security, including

limited expert review and open-source review. Each module can be reviewed separately, in the

style more suited to that module, without compromising the integrity of other modules. SAVE

can therefore benefit from some of the advantages of both methods [77-78]. This is in keeping

with N-version testing notions [38].

3.3.1 The Trust Model

The trust model is small and simple to describe, yet its implications are powerful. Principally,

each module trusts itself and trusts that no majority of modules which implement the same

function shall collude, fail, become disconnected or express an inaccurate result. A module

places no trust in any minority of its counterparts; a minority group may consist of erroneous,

malicious, hacked or slow software. A module does not trust another module to respond

correctly, quickly, or even to respond at all.

3.3.2 The Threat Model

 62

As with any voting system, the SAVE system must be able to make certain essential guarantees.

In particular, we must guarantee that no one is able to produce a receipt that ties a voter to the

ballot he cast, so that no one can be forced or enticed into revealing this information. We must

also ensure that each voter that casts a ballot actually has cast the ballot that the voter intended

and that the ballot is counted. We must ensure also that our system produces correct results

overall at every stage. We assume that a variety of serious attacks are possible from internal

developers, election officials, voters or external hackers. We have taken steps to prevent these.

Insider Attacks

Module developers may attempt to introduce malicious code that might, for example, modify,

delay or delete votes, incorrectly report tallies, or flood the system so that valid operations are

delayed or unable to take place. Such a threat could also come from any underlying hardware or

software libraries used by the system. Additionally, module developers or other persons might

seek to attack the voting machine’s hardware or software.

Each module is compiled on several different compilers with the majority result chosen as the

official executable. This mitigates the possibility of bugs or Trojan horses from a few compilers

compromising the election. Additionally, by the N-version assumption, a few modules

producing an incorrect result, because of maliciousness or error, has no effect on the overall

results of the system. Further, modules that produce minority results have their result ignored

and their faultiness noted. We also assume that it is highly unlikely that a majority of module

developers, implementing the same function, will collude in such a way that their modules

produce the same incorrect result. Thus it is unlikely that the behavior of the system as a whole

would be swayed by malicious modules. Also, the modules at each stage do not, by themselves,

have any useful information, and also are not guaranteed that their information will influence the

final result. This reduces the incentive of malicious developers to expose their module’s data.

Additionally, only some fraction of the modules developed for each stage are actually used in the

SAVE system. Therefore a module developer never knows for sure whether his module will be

used.

 63

No module can bring down the system by corrupting or otherwise attacking critical data. Each

module has its own copy of the critical data it needs to execute correctly and securely and

recover from errors. This copy is well protected by the secure and curtained memory that the

TCB provides to each module. Further, the TCB protects its own critical data. Thus the only

critical data that a module has access to is its own and the system does not depend on a single

module’s operation. The other modules’ behavior is not affected and thus the system can

recover.

Each module must receive a command from a majority of modules in the previous stage before

that command is carried out. Thus it is impossible for a few modules to spoof the system, by

causing other modules to perform tasks that they would not have done if the execution was

proceeding correctly. Similarly, it is impossible for a module to learn another’s vulnerabilities

by sending arbitrary requests to that module and observing responses. Those requests will be

ignored because they are in the minority.

Since a module cannot access another’s memory, or cause another module to perform operations,

it would be very difficult for a malicious module to get a correct module to behave maliciously.

Even if a module sent an incorrect input to another, that input is not likely to be elected and

operated on, and therefore the receiving module should be able to recover from that incorrect

input. The system therefore has the “fault containment” property.

It is therefore very difficult for malicious modules to affect the system. This fact reduces a

developer’s incentive to introduce malicious code.

System installers may attempt to steal module secrets or provide modules with misleading and

malicious startup information. For example, a system installer might attempt to steal a module’s

private key or add fraudulent information to a module’s directory. We attempt to counter this

threat in various ways. Firstly, the modules never reveal their secret keys, not even to system

installers. We trust that the Trusted Computing Base is able to correctly generate key-pairs and

protect the private key of each module. As such, it is very unlikely that a system installer would

gain access to a module’s private key. Secondly, we require the agreement of many system

 64

installers before any bit of information is approved for inclusion in the modules’ critical data.

Thirdly, the module versions its critical data, for example its directory, as soon as it is installed to

prevent modification.

Voting machines and their installed software are also vulnerable, both during development and

during the actual election. We keep the voting machines as physically secure as possible at all

times, to prevent attack to the hardware. Also, we sign and version all the module executables,

and protect software using access control lists, and data encryption. In this way, we can verify

what software actually runs on the machine; we can limit who has access to software and data;

and we can record who exercises their authority to access. These steps help protect the system

from both internal and external hackers.

External Hackers

We assume that with enough experience and time, outside hackers could attempt to gain access

to messages between system components, impersonate system components, or flood system

components so that they are unable to service valid clients.

The network operates behind a firewall, and modules service requests from pre-determined,

authenticated clients only. Further, the modules are distributed, operating from many different

hosts and ports; it is therefore unlikely that an attacker will be able to attack and bring down

enough modules to affect the system overall. Registration and Aggregator databases are also

backed up independently so that recovery, in the case of crashes or hacks, is possible. In this

way, no votes that have already been cast, are lost if the system goes down. This helps mitigate

the effects of denial of service attacks.

Communication between modules is done using authenticated SSL, so an external hacker is

effectively unable to view messages or send impersonating messages or successfully replay old

messages. Thus an external hacker is unable to control the messages that arrive at a host or

impersonate system components. Only static data is passed between modules. This minimizes

the possibility of external hackers gaining control of system components that are appropriately

defended against buffer overflows and the like.

 65

Attacks that cause a module to become malicious still have little effect on the system. This is

because the system is resistant to malicious modules, as described in the previous section.

Sensitive decisions, for example which modules will be included into the final SAVE system, are

made as close as possible to the election time, so that outsiders will have less time to discover

them. Additionally, the software is reviewed by trusted experts, but kept secret from outsiders,

for the short time between System completion and the election. We do this because we do not

currently trust all members of the public who might find exploits to appropriately report it. The

System is not completely dependent on obscurity however. Though exposure of the source code

to trusted experts may (or may not) reveal vulnerabilities, it does not automatically give those

experts any control over the system.

Corrupt Election Officials

We assume that a corrupt election official could attempt to gain access to a voting machine’s

data or software and use this access to discard or modify valid ballots or insert fraudulent ballots

into the system.

Multiple election officials are at hand to observe each other during every task. This minimizes

the chance of an attack, especially since it is unlikely that all of the observing election officials

would collude in such a way that allows illegal attempts to tamper with the voting machine.

Additionally, any attempted modification of a ballot before it is cast will be detected and

corrected because of the voter verification of each ballot. Also, any attempt to modify a ballot

after it has been signed by the Registration and Witness modules would only render the

signatures invalid and hence invalidate the ballot itself. Ballots can not easily be modified after

they are cast because ballots are stored on read-only media. Also, because each official ballot

must be elected by majority from multiple ballots at different computers, the compromise of the

ballots on a few computers will not affect the official ballot corresponding to any particular vote.

Discarding stored ballots at a few storage repositories, even if this could be accomplished, would

not truly remove the ballot from the system or stop it from being counted. The system is thus

safe from the threat of data or functional integrity compromise.

 66

The modules are run from a trusted computing base, and they never share their secrets. Thus no

introduced software can impersonate a module because it would not have access to the private

key of any of the pre-listed authenticated modules. It is virtually impossible to insert fraudulent

ballots because the intruder would have to corrupt or steal the private keys of a majority of

Registration modules in order to get their signatures to validate the fraudulent ballot. Ballots

cannot simply be copied because each ballot has a unique identifier.

Finally, there is no difference between a test vote and a real vote, as far as the software is

concerned. So there are no back-doors, or other problems arising from such distinctions, that can

be exploited.

It is therefore highly unlikely that votes can be removed, modified or forged.

Malicious Voters

We assume that malicious voters may attempt to vote multiple times, or vote as another person,

or sell their votes.

The SAVE system prevents multiple votes because the Registration modules keep track of all

voters who have cast their ballots and would not sign a ballot for someone who has already

voted. Registration module signatures are needed for any ballot to become official. A malicious

voter cannot vote as another person unless he has stolen that person’s registration token and

managed to convince the authenticating poll worker that he is that other person. The registration

tokens are securely sent to the correct persons and the poll workers must satisfy the jurisdiction’s

authentication requirements before allowing the voter into the voting booth. We are thus

satisfied that it is unlikely that a voter can commit the identity theft necessary to vote as another

person. No module can impersonate a voter or his choices unless a majority of modules at that

stage collude. No module can expose voter’s identifying information to another because a

majority of UI modules have to agree to display that secret, and the correct modules will not do

so. None of the internal modules have any control over the I/O and no voter can access the

 67

machine’s file system or memory, so that it is impossible for a voter and a module to exchange

secrets.

Figure 3.3: Knowledge Separation

The SAVE system uses encryption and blind-signatures to avoid receipt-creation. There is also

clear separation of knowledge within the SAVE system, as indicated in Figure 3.3. The User

Interface module and the Ballot Request module do not know the identity of the voter or the

voter’s selections. The Listener modules have access to the voter’s selections, but do not know

the identity of the voter. The Registration modules know the voter’s identity but do not have

access to the clear-text ballot. Witness module does not have access to the clear-text ballot or the

voter’s identity. Finally, the Aggregator modules have access to the clear-text ballot but not the

voter’s identity. The Registration, Witness and Aggregator modules are shared by multiple User

Interface modules at different voting machines, so they may encounter encrypted ballots from

any of several different voters at any time. The encrypted ballots can be mixed, using a mix-net

scheme [79], to further disassociate voter-identity from ballot. This prevents the creation of a

receipt or violation of voter privacy, unless there is collusion by multiple, functionally distinct

modules. Additionally, these steps help protect the secret information in the system in general.

3.3.3 Security improvement through N-version programming

n

n

nn

User Interface
(---)

Witness
(---)

Listener
(ballot)

Registration
(id)

Aggregator
(ballot)

 68

The architecture of this system uses diversity, redundancy and threshold agreement for fault and

hack tolerance. By N-version programming principles, the modules do not rely on any particular

module, and do trust any particular module. Also, the modules have the “self-checks” of single-

version systems, and also have the “neighbor-checks” of N-version systems. Thus, intuitively, it

is expected that an N-version system should be more secure than its corresponding single-version

system. Though we have mentioned the security benefits of N-version programming throughout

the thesis and this chapter, we combine them here to make a definitive statement that an N-

version system is inherently more secure than its single version counterpart. That is, the security

of any single version system can be improved by adding diversity and redundancy to that system,

thus creating a corresponding N-version system. N-version principles help the SAVE system to

resist the following major attacks: corruption of critical data or state, compromise of module data

or functional integrity, compromise of system functional integrity, malicious logic insertion,

denial of service and spoofing. It also protects SAVE modules from malicious modules or

outsiders that are not currently aware of vulnerability in the module, but hope that by making

requests and viewing module’s responses, they would learn information that can be used against

the module or the system.

Corruption of critical data or state

All system critical data is redundant – each module owns a copy of all the information it needs to

execute correctly and securely and recover from errors – and all module critical data is well

protected by the curtained storage and secure memory provided by the TCB. Additionally, the

TCB protects its own critical data and other secrets. Thus no module or software component can

bring down the system by corrupting or otherwise attacking critical data.

Compromise of Module Data or Functional Integrity

Redundant modules perform the same operation on the same input, and so the correct output can

be determined by majority, even if a few modules are hacked, produce an incorrect result, or

otherwise fail. Also, multiple channels will communicate the same majority result, so that the

receiving module is able to recover the correct input even if a minority of channels has been

maliciously or otherwise disconnected. Redundant audit trails provide security, verifiability and

reliability by making the audits more resistant to tampering. Modifying or destroying the audit

 69

trails stored at a few storage repositories will not affect the overall audit, which is decided my

majority on extraction from all repositories. The redundancy and diversity features of SAVE

thus contribute significantly to the security of the SAVE system.

Compromise of System Functional Integrity

It is extremely difficult for a hacker or malicious insider to sway the actual output of an N-

version system [80]. It is almost impossible to change a person’s vote, for example. Changing

the vote cast would require careful insertion of faults that create identical failures at a majority of

modules’ comparison points at every stage after the voter has reviewed his ballot. Further, to

successfully change the vote cast, those faults cannot cause those failures at those stages before

the voter has reviewed the ballot. The faults for each of the majority compromised modules

would have to be triggered after the voter has reviewed the ballot so that the modified ballot will

not be detected. It is very unlikely that a malicious insider will have access to a majority of

modules. The module source code is carefully controlled, both physically by securing the

machine it is on, and virtually with access control lists. Further, it is very unlikely that an

external hacker would be able to modify the operation of a majority of modules. Even if the

enemy was able to gain access to a majority of modules, experiments have indicated that it is

very difficult to force coincident errors to occur in a majority of diverse modules by injecting

faults [80]. Thus it is very likely that the SAVE system will cast the vote that the voter intended.

Fault / Malicious Code Insertion

The SAVE system consists of numerous small and simple modules. Each module is a few

hundred lines of code at the most, and performs very few functions. As such, validation,

verification and review are much easier, and any bugs, malicious code or vulnerabilities are

consequently much easier to detect and correct. Each module can be tested and certified

independently, and modifications to one module do not affect any other module. Additionally,

the security of each stage can be analyzed separately, allowing greater focus which in turn leads

to a greater problem detection rate and more completeness of review in general. The system is in

general very maintainable and can keep pace with advances in social and technological research

as well as government policy. This has obvious implications for security as malicious code is

more likely to be detected and removed, with suitable punishments for the developer.

 70

Additionally, the more credible threat of detection reduces the incentive of the developer to

insert malicious code. Note that even though the interactions between the various SAVE stages

appear relatively complex, the rules governing the interaction of modules need only be certified

once. The cost of validating the SAVE process becomes a less significant part of the overall cost

as more and more modules are developed. Though the SAVE process becomes relatively stable,

new modules may be made as frequently as desired, to increase diversity and minimize the

chance that any module becomes compromised as well as minimize the time that any corrupt

module, already included, would have the chance to harm the system.

Denial of Service

The modules are distributed, operating from many different hosts and ports. Also, each module

receives inputs, across independent channels, from several diverse but functionally equivalent

modules. It is therefore unlikely that an attacker will be able to attack and bring down enough

channels or modules to prevent modules at subsequent stages from making input decisions; thus

subsequent stages are likely to recover. Because of these features, SAVE is particularly resistant

to denial-of-service attacks.

Spoofing

No module performs a function unless it has received requests from a majority of modules

asking it to do so. A few modules therefore cannot spoof the system; a majority of modules

would have to collude to cause the server module to perform a valid task and no amount of

modules can cause a correctly implemented module to perform a task that is not listed in the

module’s list of services. Consequently, it is impossible for a module to learn another’s

vulnerabilities by sending arbitrary requests to that module and observing responses. Those

requests will be ignored because they are in the minority.

3.3.4 Cryptographic Security

A number of cryptographic algorithms, protocols and concepts aid in the security of the SAVE

system. All modules are issued their own private keys and are able to keep them safe using a

trusted computing platform [73]. Modules use signing key pairs for signing, sealing key pairs

for sealing, and communication key pairs for their transmissions. All communication between

 71

modules is done using authenticated SSL, so data transmissions are protected from exposure by

wiretapping and modules are protected from man-in-the-middle attacks or general replay attacks.

Authentication also helps protect against external chosen-plaintext and chosen-ciphertext attacks.

Note that, for sealing, message blocks of insufficient size are padded before encryption. Adding

random bits to the messages help guard against déjà vu attacks, where dictionaries of plaintext<-

>ciphertext are accumulated and used to extract secret information about the keys. Also,

cryptographic hashing is applied to the message to be signed, before signing, to guard against

unintended signatures generated using blinding-based attacks.

SAVE also utilized blind-signatures [81] to maintain privacy and ensure receipt-freeness. Each

Registration module receives voter identifying information encrypted with its own encryption

public key and completed ballots encrypted with the public keys of Aggregator modules. Thus

the Registration module can decrypt the voter’s identification, but the contents of the encrypted

ballot remains secret. If the Registration module verifies that the voter is authorized, the

Registration module signs the encrypted ballot without ever knowing its contents. Thus the

voter’s ballot is completely separated from voter authorization. The Aggregator module can

verify the signatures of the encrypted ballot, before decrypting the ballot and observing the clear-

text. The Registration module’s signature is known as a blind signature and it allows the system

to maintain the privacy and security of the ballots.

The cryptography described is crucial to SAVE’s security module, but SAVE also enjoys the

benefits of the simplicity that arises from the use of relatively few cryptographic elements and

algorithms [35, 37].

 72

Chapter 4

Modeling SAVE’s Probability of Failure

N-version software performance and reliability have been traditionally hard to quantify [38, 40-41, 51,

62]. The modules within each n-version software unit differ from each other in particular ways so

diversity itself is nonstandard across systems. Experimental results from particular systems are therefore

particularly hard to generalize upon. Additionally, it is hard to experimentally measure the extent of

diversity between modules and the effect of this particular diversity on the correlation of failures,

especially for highly reliable software where very few failures are available for analysis [40-41, 82, 51,

62]. Modeling is especially important to N-version programming because of the limitations of

experimental inference and extrapolation of such systems.

We know that failures do not necessarily occur independently [53, 60], so that simpler models based on

such independence are not practical. Several more sophisticated models of n-version software diversity,

performance and reliability have been constructed, which move away from independent failure

assumptions [59]. Early models by Eckhardt and Lee [83] and Littlewood and Miller [55] provided some

foundations for n-version modeling. However, these models were designed to measure the mean

probability of failure taken over all possible versions that could have been constructed from a particular

set of specifications and they are therefore unsuitable for modeling particular instances of n-version

software. Since then, Popov, Strigini, et al, have introduced models for particular instances of n-version

software, derived from particular component software versions, including a Markov chain model and a

Bayesian Inference model [63, 61, 64, 65]. Unfortunately, both schemes are not particularly suited to

quick prediction of the reliability of a system before experimental results are available. Such prediction is

useful to help guide the actual system implementation. For example, the number of versions that should

be implemented per stage could be arranged apriori to maximize the estimates of reliability of the system

provided by a suitable model, given cost and performance constraints, if such a model was available. We

extend the work of Popov and Strigini [51], so that we can model particular instances of our multi-stage,

multi-version SAVE system in a way that facilitates prediction.

 73

4.1 Abstraction of the SAVE System

The SAVE system consists of N versions per stage and M stages. All versions at a stage m

implement the same functional specification and are thus expected to perform the same function.

However each version is implemented independently, by different developers using diverse

development methods, so it is expected that the versions will differ. In particular it is expected

that different versions will contain different sets of faults.

The versions at the first stage receive input from outside the system. We assume no lateral

communication; versions from the same stage do not communicate directly. Versions from stage

m-1 communicate with versions from stage m using imperfect channels. Thus there is a positive

probability that a message from a version at stage m-1 may become corrupted in the channel,

before reaching the intended recipient version at stage m. In particular, messages may be lost,

modified so that they are changed into another legal message, or modified so that they become

an illegal message. The outputs of each version at stage m-1, possibly modified by the

communication channels, form the inputs to each version at stage m. Each version at stage m

attempts to elect an official input from the inputs presented to it, and if successful, performs its

specified operation on the elected input. Please see Figure 2.1 for a depiction of input flow

through the SAVE system.

A version’s decision algorithm function, d(…), is responsible for choosing as the official input

for that version, the input that is most likely to be correct. We assume that an input that occurs

an absolute majority, ⎡N/2⎤, of times, is more likely to be correct that any other input present. N

here is the number of versions from the previous stage, each of which sends at most one input

each round. Thus if an absolute majority input is found, that input is elected as the version’s

official input and the version’s specified operation is then performed on that input. If no

absolute majority input is received then no official input is elected and the version performs no

operation. The SAVE system versions are expected to provide a correct response to each

specified demand. Thus a version “fails” if it produces no output, or an incorrect output, in

response to a specified, and hence legal, demand. See Figure 2.2 for a diagram of the abstracted

tasks of each version: those of applying the decision function to its inputs, d(…), then, if the

 74

decision function provides a legal, non-null decision, f(d(…)), applying its specified function to

the elected input and sending its output to the modules of the next level.

4.2 SAVE Fault and Failure Model

The SAVE fault and failure model applies and extends the fault modeling work done by Popov,

et al [51]. In particular, relevant assumptions are added to the model so that the simple “1-out-

of-2” multi-version system with its single election, analyzed in [51], can be extended to a full n-

version, multi-stage system where each version in a stage faces different inputs and makes its

own election decision.

4.2.1 Model Definitions

The following terms are adopted from [51] and help describe the model. Their use also directly

helps us to analyze the system.

The Demand Space is the set of all possible demands on the system. Demands are relevant,

properly formatted inputs that are considered by the decision algorithm as possible candidates for

the official elected input. Inputs that are redundant, irrelevant or improperly formatted are

discarded and never presented to the decision algorithm for consideration.

A Design Fault in a version is an arrangement within the version that causes the version to fail

when faced with some set of demands.

A Failure Point for a version is a demand that causes that version to fail. A Version Failure

Region for a version is the set of Failure Points for that version.

Additionally, we extend the System Failure Region from so that it is applicable to the SAVE

system. The System Failure Region is defined as the set of regions where at least some k ≥ ⎡N/2⎤

Version Failure Regions overlap; that is, the set of regions where a majority of versions fail.

The Probability of Failure per Demand (PFD) for a version is the probability of the version

failing on a demand. Similarly, the Probability of Failure per Demand (PFD) for a system is the

 75

probability of the system failing on a demand. This is the probability of receiving a demand in

the failure region of the version or system respectively.

4.2.2 Model Assumptions

As with the model definitions, several assumptions are adopted from [51], both for simplicity

and for convenience. Also, we again offer extensions or modifications that are necessary in

order to apply the model to the SAVE system.

The following assumptions are extracted directly from [51]:

1. There are a fixed set of possible faults associated with each specification to be

implemented. These faults correspond to mistakes that could be made by the

specification designers or writers or the software implementers.

2. Each fault has an associated failure region.

3. Failure regions of different faults do not overlap.

4. Each fault Fi has a certain probability pi of being actually produced in a software

version.

5. Each fault Fi also has a probability qi of being ‘hit’ during operation of the system; qi is

the probability that the system receives a demand in the failure region associated with the

fault Fi.

6. Mistakes are independent of each other. It is as if each version’s team tosses a fair coin

to decide whether or not to insert each particular fault so that developers choose,

randomly and independently, subsets from the set of possible faults.

Popov and Strigini are careful to note in [51] that their assumption of independent fault inclusion

does not imply that the versions will fail independently or that there are no common factors

affecting the mistakes in separate version developments. They clarify that failure correlation and

fault similarities are possible and are modeled by the probabilities of the various sets of faults

[51].

In addition to the assumptions listed in [51] and the assumptions added previously, we add the

following further assumptions to make the model relevant to the SAVE system:

 76

7. Each fault Fi has a certain probability pi,m of being actually produced in a stage m

software version.

8. We modify the assumption regarding the total set of possible faults so that: the total set of

possible faults associated with all specifications that describe the SAVE system is {F1,

F2, …, FI}.

9. Failures in versions from different stages are independent.

10. A version that elects a faulty input fails, even if it performs the correct computation. That

is, we assume that a version cannot recover a correct output from a faulty input. Note

that a version may elect a faulty input because it received a majority input that was faulty.

11. Similarly we assume that if a faulty message is inserted into a channel, the message that

reaches the recipient will also be faulty.

12. We assume for convenience that all stages have the same number of versions N.

13. We assume that there is a probability, c of channel failure.

14. Channels become corrupt independently.

15. Though this is implied in the original model, we make explicit the assumption that the

likelihood of existence of a particular fault, Fi, in a version is independent of the

likelihood of the system receiving a demand in that fault’s failure region.

16. We assume fault containment; that one module failing cannot cause another module in

the same stage to fail. This implies, in particular, that one module can’t cause another

module in its stage to become malicious.

17. We assume that module failure is independent of channel failure.

Before continuing our calculations, we briefly indicate justifications for the major assumptions

added to the original model.

Version failure at different stages independent.

Since the versions at each stage implement a different function from the version at any other

stage, and the versions are implemented by randomly chosen developers, we feel that it is

reasonable to assume that the versions from different stages would fail independently.

A Version cannot generate a correct output in a round where it elects a bad input.

 77

It is very unlikely that a version can generate a correct output from an incorrect input when the

output is a direct function of the input. It is therefore reasonable to assume that a version that

elects an incorrect input produces an incorrect output.

Correct input to stage 1.

For simplicity, we also assume that the versions at the first stage all receive the (same) correct

input from outside the system. This assumption is not critical, but it reduces the complexity of

our resulting expressions. For the SAVE system, the input at the first stage would be the

information that the voter provides to the system through the User Interface and the information

provided by the authorization token. The user enters information at a single UI and there is a

single authorization token. Also, the stage 1 Modules are Listeners which read the user

information directly as it is entered and extract the information directly from the authorization

token. Thus it is reasonable to assume that the Listeners all receive the same information, and

that that it is the information directly entered by the user or contained in the authorization token.

The information entered by the user and read from the authorization token is taken by the system

to as “correct” by definition.

For brevity, several symbols are used in our calculations. An attempt was made to keep them

consistent with the symbols used in [51]. The symbols used are outlined in Table 4.1 below.

 78

PFD “Probability of failure per demand”

∆ PFD of a generic SAVE system, seen as a random variable

θm PFD of stage m of a generic SAVE system

N Number of software versions at a stage.

M Number of stages

I Number of potential faults (and failure regions) in a software version.

pi,m Probability of the i-th potential fault being present in a randomly chosen

version

qi Probability of a demand which is part of the failure region corresponding to

the i-th potential fault being presented to the system during its operation.

(PFD associated with the i-th potential fault (and failure region).

c Probability that a channel fails.

Table 4.1: Mathematical symbols and abbreviations

4.2.3 Model of SAVE System PFDs

As in [51], the PFD of a version or system here is the sum of the contributions of the individual

faults. Each fault contributes qi with probability pi and 0 with probability (1-pi) to a single

version. We extend the model presented in [51] by incorporating the effect of the possibility of

channel failure after each stage. As we will show, the possibility of channel failure increases the

PFDs of each stage and of the system. As we also show, the amount of the PFD increase is

relatively larger for smaller N.

 79

PFD estimate

Stage 1 Probabilities.

E[θ1|correct input]: Mean value of the PFD of stage 1 of a generic SAVE System

Fault Fi contributes to stage failure if the demand received by the system is a failure point for n ≥

⎡N/2⎤ versions in stage 1, i.e. if some n ≥ ⎡N/2⎤ versions in stage 1 fail given correct inputs.

Since the fault pi is assumed to occur independently among the modules, we can use the binomial

distribution.

E[θ1|correct input] = Σ qi Σ () (pi,1)
n (1 - p i,1) N- n

We assume that the initial input to the system is correct.

∴

E[θ1] = Σ qi Σ () (p i,1)
n (1 - p i,1) N- n

Stage m Probabilities.

E[θm|correct input]: Mean value of the PFD of stage m of a generic SAVE System, given

majority of its inputs to each module correct.

Fault Fi contributes to stage failure if the demand received by the system is a failure point for n ≥

⎡N/2⎤ versions in stage m, i.e. if some n ≥ ⎡N/2⎤ versions in stage m fail given correct inputs.

Since the fault pi is assumed to occur independently among the modules, we can use the binomial

distribution.

N

n = ⎡N/2⎤

 N
 n

 i=1

 I

N

n = ⎡N/2⎤

N
n

 i=1

 I

 80

E[θm|correct input] = Σ qi Σ () (pi,m)
n (1 - p i,m) N- n

E[θm]: Mean value of the PFD of stage m of a generic SAVE System

Pr(stage m fails) =

Pr (stage m-1 fails) +

(1 – P(stage m-1 fails)) ×

 [P(enough correct stage m modules have enough good input corrupted by bad channels to

invalidate majority | stage m-1 correct) +

 (1 - P(enough correct stage m modules have enough good input corrupted by bad

 channels to invalidate majority | stage m-1 correct)) ×

 P(stage m fails | majority of inputs to each of its modules correct)]

Let R be the number of correct modules in stage m-1 | stage m-1 is correct.

P(a channel is corrupt I its sender is a correct module)

= P(a channel is corrupt | its sender is a correct module) ×

 P(its sender is a correct module)

= P(a channel is corrupt) × P(its sender is a correct module)

= c × R/N = (cR)/N

Let V be P(a stage m module has enough good input corrupted from bad channels that it cannot

recover | stage m-1 correct).

V = P(≥ R – ⎣N/2⎦ channels corrupt good input | stage m-1 correct)

Since we assume that channel failures are independent, we can use the binomial distribution.

 N

n = ⎡N/2⎤

N
n

 i=1

 I

 81

V = Σ (Σ () (cR/N) n (1 - cR/N) R- n))* P(R | stage m-1 correct)

Let S be P(enough correct stage m modules receive input from corrupted channels to invalidate

majority | stage m-1 correct).

We assume that channel failure is independent, and therefore the modules with input corrupted

by bad channels are also independent. Therefore we can use the binomial distribution.

S = Σ () V n (1 - V) N- n

∴

E[θm] = E[θm-1] + (1 - E[θm-1]) × {S + (1 - S) × Σ qi Σ () (pi,m)
n (1 - p i,m) N- n }

System Probabilities.

E[∆]: Mean value of the PFD of a generic SAVE System

E[∆] = E[θM]

4.3 Application of the Model to the SAVE System

The parameter values are unknown and are difficult to measurable in practice. However

estimates of these parameters are still practically useful for making loose predictions about the

reliability of the system and special cases can still provide valuable insight. Let us consider

n = R – ⎣N/2⎦

 R
 N
 n

 N
 N
 n

n = ⎡N/2⎤

R = ⎡ ⎣N/2⎦ + 1⎤

 N

 N
 N
 n I

n = ⎡N/2⎤ i=1

I

 82

some simple parameter values so that we can use the model to develop intuition about the

system, even though we do not yet have actual data.

1. Consider pi,m the same for all i,m. Let this value be p.

2. Consider qi the same for all i. Let this value be q.

3. From 1 and 2, we have the assumption that “θm | all previous stages correct” is the same for all

m.

We assume that failure regions of different faults do not overlap, therefore each demand hits at

most one fault. Let us assume, for simplicity that each fault is equally likely to be “hit” – that q

= h/I, where h is some probability that a demand hits some fault. Let us assume that h=.8.

Let us also assume, for simplicity, that P(R=r | stage m-1 correct) is uniformly distributed, with

probability 1/(⎣N/2⎦ + 1) for ⎡N/2⎤ ≤ r ≤ N. We assume a basic distribution so that we can use the

model to develop intuition about the system, even without actual values. As work on SAVE

progresses, it is expected that we will get increasingly better estimates for these parameters and

distributions.

Even with these simplifications, an N-version system is expected to perform better than its

corresponding single version system. For example, for N=10, and c=.01 and p=.2, our model

indicates that the 10-version system is expected to perform 5 times better than its single-version

counterpart (N=1). A 0.2 probability that a fault is included in a version is conservative;

according to [66] results from N-version experiments over the years have shown that the chance

of a completely fault-free version can range from 60% to 90%. Additionally, they expect that good

quality software development – in the traditional sense – can deliver software with fault densities between

1 and 0.1 faults/KLOC [66]. We believe that for our system an N of 10 is also reasonable. Since

our modules are relatively simple, professional programmers should be able to produce 10

diverse versions of each module quickly. Further, from a performance perspective, our testing of

multiple instances of our versions running together, lead us to believe that our voting system

could still allow a voter to cast a ballot in less than 2 minutes. We intend to keep working on

efficiency in our communication. As expected, 1-version system reliability is reduced more by

 83

unreliable channels than the N-version system reliability. For example, for N=10, and c=.1 and

p=.2, our model indicates that the 10-version system is expected to perform 7 times better than

its corresponding single-version.

These estimates are conservative. For example, if our distribution of pi was more realistic, the

likelihood of having high-quality modules would be apparent, as would the skew of the module

quality distribution towards the higher-quality end. Having multiple versions, each with

different sets of faults, is less risky than having a single-version. If the version in the single-

version system happened to be one of low or moderate quality, it is expected that the N-version

system would show even greater gains in reliability than our model estimates with our

simplifying assumptions.

We should also realize that the N-version ability to withstand channel failure directly results in a

more secure system than its corresponding single version system. If the output channel of a

single-version system is corrupted or disconnected, the entire system fails. However an N-

version system will be able to continue, even with some channel failures. The extent of the N-

version system’s ability to resist channel failure, at any given module input point, depends on the

number of correct modules at the previous stage. A similar argument establishes that an N-

version system is able to withstand denial-of-service attacks directed at a minority of modules,

whereas its corresponding single-version system is not. A voting system that can help defend

against denial-of-service would be very useful as this attack is one of the most feared for

distributed systems communicating over a network. Because of these security features, our

system can more reliably be used with components at separate computers, communicating over

the internet.

 84

Chapter 5

Implementation

For the current prototype, we had 4 students, Shawn Sullivan, Arturo Hinojosa, David Chau and

Kevin Emery, working as independent developers. These students created software modules for

the SAVE system. Shawn worked on a User interface Module and on ballot design, whereas the

others worked on internal modules. I performed the duties of the specification team,

coordinating team and independent testing team. I created the specifications for the modules and

took steps to maximize and maintain software diversity among the modules and software quality.

We did not use a formal specification language, because we wanted to have a workable prototype

in a short time – we wanted to begin work immediately and felt that the unfamiliarity with a

formal specification language would cost more time and effort to understand than a plain English

specification. The specification included some communication details such as xml dtd sections,

providing the formats of various messages to and from the modules. However, module

functionality was generally separated from the authenticated SSL communication protocol

implementation. The functional specifications are included as Appendix A.

Development began as early as possible, but was limited by the relatively late date that I joined

this project and by the limited number of hours that the students had to contribute to this project.

However, several modules were completed. I added modules to the system as they were

completed and tested them both individually and back-to-back. Testing focused on correctness

and performance testing. Tiger-team testing and rigorous security testing is left as future work

since we believe that such testing would be more useful after an optimal number of versions – in

terms of system performance and reliability – are created. However, we established some

confidence in the security of our prototype by testing module and communication protocol

correctness. For example, we tested to verify that authentication is implemented correctly in

each module, as authentication is crucial to security. Though we had fewer versions than we

plan to have eventually, we were able to do some performance testing for larger values of N

using copies of the versions we have. The official prototype, and correctness testing on this

prototype, would not contain copies of versions, as this would obviously limit diversity.

 85

5.1 User Interface Implementation

SAVE is committed to being accessible and intuitive, and also to preventing avoidable voter

errors. The implemented SAVE UI allows a voter to correct mistakes by unselecting candidates

and selecting new ones, as many times as desired before the vote is cast. The SAVE UI also

makes it impossible to make an obscure indication, between two candidates, for example, as

might occur with paper ballots or misaligned punch cards. Many ballots are traditionally

discarded and not counted because of such stray or obscure marks [3]. We list here some of the

major features of our current SAVE UI implementation.

The implemented SAVE UI also intentionally makes it easy for a voter to navigate the ballot, by

using color and texture to serve as cues to events that should be noted. Though the color is not

reproduced here, the cues are still distinctive in greyscale, and by the textural changes. Figure

5.1 shows a ballot, displayed as expressed in the current SAVE UI display specification. The

voter is at the Supreme Court Justice race, as indicated by the lighter colored tab. Further, this

race allows a maximum of 4 candidates to be selected, as indicated by the 4 sections on that tab.

Figure 5.1: SAVE ballot

 86

If a candidate is selected, the box containing that candidate’s name changes color and texture to

indicate the selection. The texture change is depicted in Figure 5.2; the lines at the candidate’s

button changes from vertical to horizontal, and additionally a check mark is placed near the

selected candidate’s name. Also, as shown in Figure 5.2, one of the sections on the Supreme

Court Justice race’s tab changes color to indicate that 1 candidate has been selected, and up to 3

more may be selected.

Figure 5.2: Candidate selection

If the maximum allowed number of candidates for a race has been selected, the surrounding

canvas similarly changes color and texture to mark the completion. The completed race’s tab

also changes color and texture, so that it clearly stands out among the other, uncompleted, races

on the ballot. Additionally, as depicted in Figure 5.3, the SAVE UI prevents a voter from

 87

overvoting. If the voter has already selected the maximum amount of candidates allowed for a

race, and tries to select an additional candidate, the UI prevents this and informs the voter that he

must unselect one of his chosen candidates before he can select the new candidate.

Figure 5.3: Overvoting prevented

The title of the race is clearly indicated on the race’s tab, and it is easy to skip to any race on the

ballot by clicking the tab; this makes it easy for the voter to find, and go to, the races he is most

interested in, in the order that he would like to. The tab color and texture changes when races

have been completed are very useful cues, which help the voter keep track of his progress. For

example, in Figure 5.4, the color changes are represented as 3 shades of grey at the tabs. The

darkest shade, as shown on the Supreme Court Justice tab and the Family Court Judge tab,

represents races where selections have already been made. The middle shade, as shown on the

 88

District Attorney tab, represents races where no selections have yet been made. The lightest

shade, shown on the State Senator tab, represents the race that the voter is currently viewing.

Figure 5.4: Tab color cues

Significantly, our UI provides an alert for verification before the ballot is submitted, containing

the races that the voter has voted in and clearly indicating races where the voter undervoted. If,

upon receiving this feedback, the voter decides he wants to make changes, the user is allowed to

return to the ballot and edit it. The voter does not have to completely start over, with a fresh

ballot, as would generally be the case with paper; all of the voter’s previous selections are still

present on the ballot, and may be edited individually. Figure 5.5 shows such a summary of the

voter’s selections.

 89

Figure 5.5: Summary of voter’s selections – displayed before vote is cast

In addition to color and texture changes, we have added other sensory cues. Audio is available,

and headphones can be provided to the voter so that this capability can be used in private. Audio

is used at all the places where alerts or color/texture changes where mentioned above, to provide

cues to voters with vision impairments, or other disabilities. When the voter selects a candidate

for example, the UI reports that “Candidate __ has been selected for race __.” Additionally, the

ballot presented for verification is read off by the UI so that the voter can determine whether or

not the ballot is satisfactory, even if he is unable to read the record. These are first steps towards

making the SAVE system accessible to all voters. We intend to continue work in this area.

 90

Chapter 6

Issues, Limitations, Considerations, Lessons and Future Work

The SAVE system uses N-version programming to provide a voting system with increased

reliability and security. This thesis describes the first formal end-to-end design of the SAVE

system. Though a rough proof of concept has been developed, it is our aim to develop an

improved system, which takes advantage of the lessons we have learnt in the course of this

current work. We discuss here, some of the major issues, considerations and limitations

concerning the current SAVE system, as well as our plans for future work.

6.1 Issues and Limitations

With any system, the designer will encounter several tradeoffs, and possible advantages must be

weighed against associated limitations to create the best possible system overall. We have

achieved a robust, reliable and trustworthy system. However, there are several limitations to the

current SAVE system. We expect that many of these limitations will be removed or alleviated in

the future, as progress continues to be made towards an optimal n-version voting system.

Security

There is currently a lot of redundancy and repeated patterns in the SAVE system messages due to

the XML based message format. We need to investigate how vulnerable this makes the system to

ciphertext-only attacks, known-plaintext attacks, and etcetera. Then we can decide, for example,

whether the benefits of XML are worth this risk and whether one-time pads should be used to

mitigate the risk.

Duration of secrets

The Listener module has access to the voter’s completed clear-text ballot. Thus it is important

that the Listener not also have access to the voter’s identifying information so that malicious

Listener modules are unable to create a receipt that may be stored and later used as proof of vote.

The voter’s identifying information must be available to Registration modules without being

available to Listener modules, or any other modules. To achieve this, we encrypt copies of the

voter’s identifying information with the encryption public keys of the Registration modules.

 91

However, this means that the Registration encryption key pair must be generated sufficiently in

advance for each voter to be able to present his encrypted information to the voting machine. It

is highly unlikely that the Registration modules’ private keys can be extracted from their trusted

computing bases or determined from their public keys or signatures, in the weeks or months that

it takes to distribute identification tokens. However, the longer a key-pair is in existence, the

more likely it becomes, that the secret can be discovered, by some insidious insider for example.

Vertical Collusion

The n-version system is designed to resist collusion among modules in the same stage; a majority

of modules must collude to cause incorrect data to be determined correct. However the n-version

system is still susceptible to collusion from modules in neighboring stages. For example, a

Listener and a Registration module can collude to produce a receipt that is correct with some

probability. Encrypting the voter information with the Registration modules’ public keys is

sufficient only when the Registration modules are prevented from revealing the secret voter id

information to the Listener modules and the Listener modules are likewise prevented from

revealing the plaintext ballot to the Registration modules. A Registration Module and

Aggregator Module could similarly collude. Note that since existing data errors are likely to be

detected and corrected at every stage in the SAVE system, any receipt that is generated is not

guaranteed to contain the vote that the voter eventually casts. However such a receipt would be

correct with some positive probability and that probability might be enough to make it

economically viable to some.

One of our design assumptions is that our testing is sufficient to detect whether a module can

reveal such secrets to another module with XML messages. The content that would need to be

sent is clear in both cases, and therefore such code should be easy to trace. Therefore, we

believe that this is a reasonable assumption. Despite this design assumption, we currently have

policies in place to reduce the likelihood of such collusion. Each module is checked for evidence

of such collusion, in addition to any other maliciousness or errors, before the module can be

certified. Also, developers of modules that may particularly compromise the system by collusion

are strictly isolated and particularly monitored. Further, each message sent in the system is

logged, along with both its sender and its recipient, so that any Listener module that sends a

 92

message exposing secret information will be detected and investigated. Note that the messages

stored in the logs are encrypted with the public keys of the modules intended to finally read them

and strict separation of knowledge is enforced in the monitoring of these logs. Each employee is

allowed to monitor at most a minority of modules’ logs from a single stage, and this happens

only after the election has ended and the keys are discarded. Therefore each employee is

restricted to as much knowledge as the stage being monitored, and that is designed to be

minimal. No employee is able to generate a receipt from the logs without several other

employees being aware of the problem because collusion of modules from different stages is

required for receipt generation. Because of the logs, the threat of discovery is significant and is a

substantial deterrent, but we intend to further reduce the effect of possible module collusion in

the future.

Historically, we have designed the SAVE system so that voter check-in and casting occurred

together, at the Registration Module [45]. This was done to facilitate absentee ballots. However,

as indicated above, this presents difficulties given that our current trust model allows for

malicious modules. We can instead implement another version of the SAVE system which

separate the two. Such an alternative has already been designed. Though it would involve some

significant restructuring from our original design [45], we can extend the alternative design to

make sure that neighboring modules do not together possess illicit information.

Session Establishment

A critical part of system initialization is establishing, authenticating and securing the directory

containing the addresses and functions of each module. We do not trust just any trusted

computing base’s claim that it contains an official voting module as doing so would risk attesting

fraudulent modules. Instead, we physically authenticate each official voting module’s function

and address and compile the result into a directory. We do this because software cannot, by

itself, verify the claims of remote software, without some pre-established knowledge about that

remote software. This has long been the case, and generally trusted humans and companies such

as Verisign are relied on to certify the connection between a physically authenticated identity and

a public key, and pass on knowledge of that connection to other parties wishing to communicate

with the identity. To avoid placing our trust in few external roots of trust which we do not know

 93

very well, we rely on a team of carefully selected humans to validate and certify each {module,

public-keym} pairing and each {DirG, public-keyDirG} pairing.

The collection of individuals on the team are chosen so as to minimize the chance of collusion

and all the individuals we place any trust in are known and can be held accountable. However

this process is somewhat inconvenient. Also, while it might be possible to predict the

trustworthiness of persistent software, it is very much more difficult to predict the

trustworthiness of human beings, whose predilections might change at any time.

Treatment of Faulty modules

The SAVE system would be more efficient if modules could ignore faulty modules in the

previous stage. However, the current SAVE remote communication protocol, geared around the

exchange of non-executable messages over unreliable channels, makes it is difficult to detect

faulty modules with certainty; a module could be faulty, or some of the channels from that

module could be suffering from transient or permanent failures. This is an application of the

Byzantine problem, and as such, requests for retransmits would still not offer certainty, and

would reduce the efficiency of the system – both in terms of messages and time.

The faulty behaviors of modules are currently noted and the outputs of modules that repeatedly

act faulty are given less consideration at comparison points. However, we will continue to

investigate improvements over the current system.

Limits to Redundancy

The SAVE system presents only a single display to the voter. This is done to make the system

simple to interact with and easy to understand. We believe that it is unreasonable to expect a

human voter to be able or willing to make decisions based on multiple screens or screen

segments. We are able to detect errors with the single I/O devices and can potentially replace

them, but this is inconvenient and harms voter trust in the system. Further, the voting machine’s

operational software is not redundant and so many software errors here would not be detectable

under the current conditions. Future work will involve creating a redundant trusted computing

base that could eliminate some of these points of failure. We believe that our system is still

overall an improvement over systems with no error masking at all.

 94

Diversity

The SAVE system is highly dependent on module diversity for error detection and error

masking. Our work thus far has indicated that it is likely that we can achieve such diversity.

However, because of the large size of our possible input space, we cannot be absolutely certain

that we have achieved, or can achieve, the diversity necessary to distinguish and correct all

possible errors. In short, we have reduced, but not removed, the effects of the theoretically

established fallibility of complex software [37]. Our certainty of the diversity we have achieved

is also limited by the fact that little progress has been achieved by the research community in

measuring software diversity or modeling the effects of individual diversity introducing factors

on software failure [38, 40-41, 51, 62].

Complete Elections Protocol

The voting machine and its operations form only part of the entire election process. We assume,

for our purposes, that the rest of the election protocol is correct so that we can focus on our

contribution. However we are well aware of problems with voter registration and authentication

and poll worker adherence to policies [3]. These problems are currently beyond our scope, but

others in our research team are addressing these issues. Additionally, we intend to make

contributions to improving registration in the future.

Number of messages

An n-version system generally generates more messages than its single version counterpart. The

SAVE system generates (M-1)*N2 messages, where M is the number of stages and N is the

number of messages per stage, because the election of inputs for each stage is itself distributed.

This distribution is very important for reducing single points-of-failure and the number of

comparison points – one for each stage - was chosen to provide suitable error masking. The

number of messages appear somewhat large, but M is typically ≤ 6 and N is typically 5, so that

(M-1)*N2 is itself manageable, particularly where the modules are distributed across several

processors. Each module need only process ≤ N messages for each task, and these messages are

rather small documents of XML instructions and data. Our prototype manages this number of

 95

messages well and we believe that a SAVE system will be able to facilitate voting in reasonable

time.

 6.2 Considerations and Lessons

It is important that the human component of a secure software system is not ignored during the

system’s design. We note several particularly helpful and significant managerial measures that

can improve the quality and trustworthiness of the software produced.

Relationship Protocols.

Our n-version programming protocol requires humans to implement strong, secure and

distrustful protocols that literally constrain their relationship with their coworkers. We have to

carefully consider how to make sure that all workers are motivated to do this and trained on how

to detect possible actions and resist possible lurings from corrupt coworkers. Humans naturally

tend to relax their guard over time and this must also be guarded against; thus the coordination

team must continuously monitor the implementation of relationship protocols amongst workers.

These issues may arise even within the same development team and should not be neglected or

ignored, even if they are not expected to occur. We found that periodical requests for status

reports in this area would probably help keep individuals alert.

Identify Experts and Expert Tasks

As noted by Knight, Leveson and others, some aspects of each function may be harder than

others [53]. Where possible designers should attempt to extract and separate the harder aspects

or the specialized aspects of the systems functionality so that they can be implemented by expert

teams. This reduces the cost of software development because developers are assigned the tasks

they are most likely to succeed at. Experts are not wasted on mundane tasks and, since

developers need not be skilled at all the technologies and solutions required by the system as a

whole, developers will be easier to find at more reasonable costs. This separation also reduces

the correlation of software failures with task difficulty [53] since the implementers of each task

are those that find that task minimally difficult.

Developer Screening and Training

 96

It may also be possible to “create” experts. Application of forced diversity, for example, is

particularly suitable to forms of developer training that do not overly limit diversity. In

particular, because sufficiently diverse methods have already been prescribed under the forced

diversity paradigm, it becomes possible to train developers in their separate methodologies

without affecting the diversity of the system as a whole. The possibility of training is significant

as it can improve the quality of the software and the speed with which the software can be

developed.

6.3 Future Work

We have several plans for the evaluation, expansion and improvement of the current SAVE

system. The work on SAVE is expected to continue in the foreseeable future and will focus

initially on validating and verifying the current prototype and design; extending the prototype to

fully implement the current design with more versions of each module; developing and using

schemes for measuring software diversity; implementing or reviewing the source code of several

trusted computing base systems so that we can certify the reliability and trustworthiness of the

trusted computing base that we use; improving the current registration system; and improving

election protocols surrounding voter use of the voting machines.

Completion, Testing and Expansion

We plan to implement our own trusted computing base or review the source code of externally

implemented systems so that we can certify our expectations of correctness and trustworthiness

of this system. The trusted computing base theoretically ensures that the system’s I/O is also

correct and trustworthy. However, we plan to complete our display monitoring modules so that

we can consistently use our system premise of n-version programming and apply the added

reliability and other benefits of n-version programming to detecting errors in the system’s output.

For this reason as well, we also plan to investigate the possibility of a redundant trusted

computing base and the practicality of including it in our system.

Already, the ballot display style that we have designed is much easier to read and navigate, gives

much clearer feedback about the voter input it receives, and prevents much more errors,

including over-voting, than current paper ballot systems [3]. However, we plan to continue our

 97

ballot display design work so that we can optimally convey the contents of a ballot to any

franchised person, including those persons with special needs [5].

Further, we intend to extend the number of versions of each module to at least 5 so that we can

more rigorously test the performance and reliability of the SAVE system. Further testing is

necessary and a formal test coordination team must be established to examine the reliability and

diversity of our system and the nature of correlation of the failures discovered. The test

coordination team will also be responsible for editing and enforcing the test specifications,

especially for back-to-back testing where there is a threat to diversity. We intend to vary the size

of N and test recursively until we achieve optimal performance and reliability for the system.

Also, the SAVE protocols are subject to change if modifications to them show better testing

results. In fact, it is expected that the protocols will be improved on as a more advanced and

sophisticated prototype evolves.

We also intend to investigate the many avenues for forced diversity in the SAVE system and

incorporate the most beneficial of these. We expect that forced diversity will improve the

reliability and diversity of our system, in accordance with n-version research predictions [38,

58].

Measuring and Modeling Software Diversity and its Effects

Because of the importance of diversity in an n-version system, it is crucial that we find ways of

measuring diversity and also ways of measuring and modeling the effect of various types of

diversity on system failures. We have already begun plans for statically and dynamically

measuring software diversity from the source code and its executables as well as from the

execution of the software. We hope to use resulting diversity rankings of sets of modules to help

elect the subset of modules that would provide the best combination of diversity and individual

correctness. This extra knowledge will improve the overall SAVE system created. Additionally,

we realize that the effects of the diversity present will produce a much better prediction of the

quality of the generated SAVE system than the magnitude of the diversity. We thus expect to

also begin work in the future on modeling and measuring the effects of diversity on the system.

 98

As an added pursuit, we hope to determine whether software modules can be made sufficiently

diverse that very different techniques would be needed to hack them. If the module

vulnerabilities can be made diverse enough, we postulate that it would be difficult for an

adversary to gain control of a majority of the modules at any stage. This has very obvious

implications for the contribution of diversity to security.

Voter Registration and Election Protocols

Voter registration problems may have caused up to 3 million votes to be lost in the 2000

Presidential election [3]. It is clear therefore that problems with voter registration technologies

and protocols need to be addressed. We intend to work on the voter registration database

management systems. Our work will include designing protocols to make it easier for voters to

enter and update their registration information and for polling stations to be aware of these

changes in a timely fashion; designing input schemas to facilitate the presence of correct and

timely voter information in the registration databases; and designing and implementing

constraint-checkers to ensure that the voter information in the registration databases are as

consistent and correct as possible.

Additionally, we intend to work on improving the protocols surrounding the actual use of the

voting machines, so that we can improve the reliability of voting overall. The relationship

between the poll workers and the voting machines needs to be as simple and efficient as possible

and needs to be clearly established and expressed. Further, poll worker training and adherence to

protocol is important and thus we need to find ways of achieving improvement in these areas.

 99

Chapter 7

Conclusion

Many persons are unwilling or unable to vote because current systems are not sufficiently

accessible or secure [5, 84]. Others who make the attempt often find that they are unable to vote,

or their votes are not counted, due to flaws in the voting system [3]. SAVE is a viable approach

to improved accessibility, security and correctness for voting and, as such, SAVE can address

these problems.

SAVE principally reduces single points of failure and trust. This is a significant improvement

over single-version voting systems, where a few corrupt programmers or faulty sections of

software could corrupt the entire system and spoil cast votes. The distributed and redundant

nature of the SAVE architecture allows SAVE to detect and correct most non-pervasive errors,

including channel failures, and recover from attacks that may cause such errors. SAVE can

therefore function well, even over unreliable networks or in the face of certain attacks, thus

offering much needed reliability and robustness to the field of voting systems. Further, SAVE is

modular, and each of these modules is relatively simple. This makes a SAVE system relatively

easier to implement and certify than many current voting systems. The SAVE modularity also

makes it easy to remove faulty modules if any are discovered, or incorporate new improved

modules or new user interface display styles for the benefit of the public; there need be no legacy

code.

The SAVE system is practical and can be used in many voting environments. Though we are not

yet ready for internet voting, it has already been indicated that SAVE, as an N-version system,

performs better over unreliable networks than corresponding single version systems. SAVE

would thus be more suitable for internet voting than single-version systems when improved

authentication, etcetera makes internet voting feasible. The SAVE theory promotes as much

diversity as possible, and so a SAVE system would be most secure implemented across diverse

operating systems, hardware, etcetera, in a closed network. However SAVE can be implemented

on a single computer. Further, basic operating systems can be used; there is no need to use large,

 100

monolithic operating systems. As such, SAVE can conceivably be implemented on a simple

game machine. In general, SAVE can be implemented in almost any computing environment.

As indicated in this thesis, N-version programming increases the reliability and security of

systems – most of the benefits of SAVE were achieved by applying the concepts of N-version

programming and modularity. The awareness that SAVE brings, about the suitability of N-

version programming for voting, is a major contribution to the field of voting. We believe that

SAVE is sufficient to demonstrate the feasibility and advantage of N-version voting systems

over traditional single-version systems. Further, the benefits of SAVE, and its applicability to

many voting environments, assure us that SAVE is a useful voting system in practice. SAVE is

poised to meet the urgent need of the voting public for a voting system that is accessible and that

counts their votes reliably, correctly and securely.

 101

References

[1] U.S. Department of State International Information Programs Publication. “Rights of the
People: Individual Freedom and the Bill of Rights,” [online document], (October 2003) [cited
January 18 2004], Available at: http://usinfo.state.gov/products/pubs/rightsof/

[2] M. Foreman, D. Reid, P. Reilly and A. Wiggins “Voting Irregularities in Florida During the
2000 Presidential Election” [online article], (June 2001), [cited January 18 2004], Available at:
http://www.usccr.gov/pubs/vote2000/report/main.htm

[3] California Institute of Technology and Massachusetts Institute of Technology. “Voting, What
Is, What Could Be.” July 2001.

[4] R. Smith, “Electronic Voting: Benefits and Risks,” Trends & Issues in Crime and Criminal
Justice, Australian Institute of Criminology, No. 224, May 2002.

[5] J. Dickson, “Voter Verified Paper Ballot: De facto Discrimination Against Americans with
Disabilities,” in First Symposium on Building Trust and Confidence in Voting Systems,
December, 2003.

[6] M. Bellis, “The History of Voting Machines,” [online article], (November 1998) [cited
January 29 2004], Available at: http://inventors.about.com/library/weekly/aa111300b.htm

[7] S. Knack and M. Kropf. “Invalidated Ballots in the 1996 Presidential
Election: A County- Level Analysis.” in Journal of Politics, 65:881-897, 2003.

[8] L. Landes “Voting machine fiasco: SAIC, VoteHere and Diebold,” [online article], (August
2003), [cited January 18 2004], Available at:
http://www.onlinejournal.com/Special_Reports/082003Landes/082003landes.html

[9] T. Kohno, A. Stubblefield and A. D. Rubin, “Analysis of an Electronic Voting System,”
[online article], (February 2003), [cited January 18 2004], Available at:
http://avirubin.com/vote.pdf

[10] Associated Press. “Site of electronic voting firm hacked,” [online article], (December
2003), [cited January 18 2004], Available at:
http://www.cnn.com/2003/TECH/biztech/12/29/voting.hack.ap/index.html

[11] L. Landes, “Elections In America - Assume Crooks Are In Control” [online article],
(September 2002), [cited January 18 2004], Available at:
http://www.ecotalk.org/AmericanElections.htm

[12] “VoteHere Reviewers Archives,” [online article], (January 2004), [cited January 18 2004],
Available at: http://www.cs.virginia.edu/pipermail/votehere-reviewers/2004-January/thread.html

Formatted: Justified

 102

[13] J. Schwartz, “Security Poor in Electronic Voting Machines, NEW Study Warns,” New York
Times, January 29th 2004.

[14] P. Troy, “The Georgia Debacle - in plain english," [online article], (November 1998) [cited
January 29 2004], Available at: http://workersrighttovote.org/summary.htm

[15] D. Perata and R. Johnson, “Don't take chances on electronic voting machines,” [online
article], (April 2004), [cited May 11 2004], Available at:
http://www.signonsandiego.com/uniontrib/20040423/news_lz1e23peralta.html

[16] M. Hardy, “California nixes e-voting,” [online article], (May 2004), [cited May 11 2004],
Available at: http://www.fcw.com/fcw/articles/2004/0503/web-evote-05-03-04.asp

[17] A. Viglucci, “1,700 Dade Voters Mispunched Chads,” [online article], (January 6, 2001),
[cited May 11 2004], Available at: http://www.commondreams.org/headlines01/0106-01.htm

[18] P. G. Neumann, “Security Criteria for Electronic Voting,” in 16th National Computer
Security Conference, Baltimore, Maryland, September 20-23, 1993.

[19] B. Williams, “Description of a Voting System,” for I.E.E.E. Voting Systems Standards
Committee, November, 2001.

[20] HELP AMERICA VOTE ACT OF 2002, [online], (April 2003), [cited January 23 2004],
Available at: http://fecweb1.fec.gov/hava/hava.htm

[21] M. Andino, Help America Vote Act Of 2002 - South Carolina State Plan, September, 2003.

[22] D. Jefferson, “Requirements for Electronic and Internet Voting Systems in Public Elections,
Compaq Systems Research Center,” [online document], (August 2001), [cited January 18 2004],
Available at: www.vote.caltech.edu/wote01/pdfs/djefferson.pdf

[23] “Election Systems and Software,” [online], (January 2004), [cited January 18 2004],
Available at: http://www.essvote.com

[24] “Diebold Election Systems,” [online], (January 2004), [cited January 18 2004], Available at:
http://www.diebold.com/dieboldes

[25] “Vote Here Inc,” [online], (December 2003), [cited January 18 2004], Available at:
http://www.votehere.com

[26] “Diversified Dynamics, Inc,” [online], (January 2004), [cited January 18 2004], Available
at: http://www.divdyn.com

[27] D. Malkhi, O. Margo and E. Pavlov, “E-Voting Without `Cryptography,” in Financial
Cryptography ‘02, February 2002.

 103

[28] R. Cramer, R. Gennaro and B. Schoenmakers, “A Secure and Optimally Efficient Multi-
Authority Election Scheme,” in Advances in Cryptology — EUROCRYPT ’97, in volume 1233
of Lecture Notes in Computer Science, pages 103–118, Konstanz, Germany, 11–15 May 1997.
Springer-Verlag.

[29] A. Fujioka, T. Okamoto, and K. Ohta, "A Practical Secret Voting Scheme for Large Scale
Elections", in Advances in Cryptology -- Auscrypt'92, in LNCS Vol.718, pages 244--260,
Springer-Verlag, 1992

[30] M. J. Radwin, “An untraceable, universally verifiable voting scheme,” in Seminar in
Cryptology, December 1995.

[31] L. F. Cranor, R. K. Cytron, “Sensus: A Security-Conscious Electronic Polling System for
the Internet,” in Proceedings of the Hawaii International Conference on System Sciences ‘97,
January 1997.

[32] M. A. Herschberg, “Secure Electronic Voting Over the World Wide Web,” Masters of
Engineering Thesis, Massachusetts Institute of Technology, Department of Electrical
Engineering and Computer Science, May 1997.

[33] D. Clausen, D. Puryear and A. Rodriguez, “Secure Voting Using Disconnected, Distributed
Polling Devices,” [online document], (June 2000) [cited January 19 2004], Available at:
http://dave.47jane.com/voting/cs444n_voting_report.pdf

[34] M. Burmester and E. Magkos, “Towards Secure And Practical E-Elections In The New
Era,” Advances In Information Security - Secure Electronic Voting, Kluwer Academic
Publishers Pp. 63-76, 2003.

[35] A. Baraani, J. Pieprzyk and R. Safavi, “A Review Study on Electronic Election,”
Department of Computer Science, The University of Wollongong, December 1994.

[36] R. Mecuri, “Florida 2002: Sluggish Systems, Vanishing Votes,” Vol. 45, No. 11
Communications of the ACM, November 2002.

[37] F. P. Brooks Jr, The Mythical Man-Month: Essays on Software Engineering, Addison
Wesley Longman, Inc, May 2001.

[38] A.A. Avizienis, “The Methodology of N-version Programming”, Software Fault Tolerance,
edited by M. Lyu, John Wiley & Sons, 1995.

[39] M. R. Lyu and A. Avizienis, “Assuring design diversity in N-version software: a design
paradigm for N-version programming,” in Proc. DCCA ‘91, pp. 197-218, 1991.

[40] A. Avizienis and L. Chen, “On the implementation of N-version programming for software
fault-tolerance during program execution,” in Proc. Intl. Computer software and Appl. Conf. ‘97,
pp. 145-155, 1977.

 104

[41] P. Popov, L. Strigini and A. Romanovsky, “Choosing effective methods for design diversity
– how to progress from intuition to science,” in Proc. SAFECOMP '99, 18th International
Conference on Computer 65, Reliability and Security: 272-285, Toulouse, France 1999.

[42] I.V. Kovalev, K.-E. Grosspietsch, “An Approach for the Reliability Optimization of N-
version Software under Resource and Cost/Timing Constraints,” Institut für Autonome
intelligente Systeme, 1999 Publication.

[43] S. Mitra, N. Saxena and E. J. McCluskey, “A design diversity metric and reliability analysis
for redundant systems,” in Intl. Test Conference ‘99, pp. XX 1999.

[44] A. Romanovsky, “An exception handling framework for N-version programming in object-
oriented systems,” in ISORC ‘00, Object-Oriented Real-Time Distributed Computing, 2000
Proceedings. Third IEEE International Symposium, March 2000
Pages:226 – 233

[45] T. Selker and J. Goler, “SAVE: A Secure Architecture for Voting Electronically,” [online
document], (November 2003), [cited January 18 2004], Available at:
http://www.vote.caltech.edu/Reports/vtp_WP7.pdf

[46] T. Yamamoto, M. Matsushita, T. Kamiya and K. Inoue, “Measuring Similarity of Large
Software Systems Based on Source Code Correspondence,” in IEEE Transactions On Software
Engineering, Vol. XX, No. Y, Month 200X

[47] E. Herbert, “Ballot Design,” Advanced Undergraduate Project, Massachusetts Institute of
Technology, Department of Electrical Engineering and Computer Science, May 2002.

[48] Vote America, 48 Electronic Voting, [online article], (January 2004) [cited January 22
2004], Available at: http://www.voteamericavote.com/electronicvoting.html

[49] Votewatch: Your Eye On Elections, [online article], (January 2004) [cited January 22 2004],
Available at: http://www.votewatch.us/

[50] Electronic Frontier Foundation, [online article], (January 2004) [cited January 22 2004],
Available at: http://www.eff.org/Activism/E-voting/

[51] P. Popov and L. Strigini, “The Reliability of Diverse Systems: a Contribution
using Modelling of the Fault Creation Process,” in DSN'01, The International Conference on
Dependable Systems and Networks, July 01 - 04, 2001, Goteborg, Sweden, p. 0005

[52] L. Hatton, “N-Version Design Versus One Good Version,” in IEEE Software, Volume 14,
Issue 6, November 1997, Pages: 71 – 76.

 105

[53] J. Knight and N. Leveson, “An experimental evaluation of the assumption of independence
in multi-version programming,” in IEEE Transactions on Software Engineering, 1986. 12(1): p.
96-109.

[54] S. Brilliant, J. Knight and N. Leveson, “Analysis of faults in an N-version software
experiment,” in IEEE Transactions on Software Engineering, 1990. 16(2): p. 238-247.

[55] B. Littlewood and D. Miller “Conceptual Modeling of Coincident Failures in Multiversion
Software,” in IEEE Transactions on Software Engineering, Volume 15 , Issue 12, p. 1596-
1614, December 1989.

[56] L. Hatton, “Are N average software versions better than 1 good version?” in IEEE Software,
(14), p. 71-76, Nov-Dec 1997.

[57] D. Partridge, N. Griffith, D. Tallis and P. Jones, An Experimental Evaluation of
Methodological Diversity in Multi-version Software Reliability. Technical Report 358,
University of Exeter, 1996.

[58] D. Partridge and W. Krzanowski, Distinct failure diversity in multiversion software.
Technical report, 348. Department of Computer Science, Exeter University, 1997.

[59] B. Littlewood, P. Popov and L. Strigini, "Modelling software design diversity - a review", in
ACM Computing Surveys, Vol. 33, No. 2, June 2001, pp. 177-208.

[60] B. Littlewood, “The Use of Proof in Diversity Arguments,” in IEEE Transactions On
Software Engineering, Vol. 26, No. 10, October 2000.

[61] B. Littlewood, P. Popov and L. Strigini, "Design Diversity: an Update from Research on
Reliability Modelling", in Proc. 65-Critical Systems Symposium 2001, Bristol, UK, Springer-
Verlag.

[62] B. Littlewood and L. Strigini, “A discussion of practices for enhancing diversity in software
designs,” DISPO Project Technical Report LS_DI_TR_04, 2000.

[63] P. Popov and L. Strigini, “Estimating Bounds on the Reliability of Diverse Systems,” in
IEEE Transactions on Software Engineering, Volume: 29, NO: 4, April 2003, pp.345-359.

[64] P. T. Popov and L. Strigini, “Conceptual Models for the Reliability of Diverse Systems -
New Results,” in FTCS ’98, pp. 80-89.

[65] B. Littlewood, P. Popov and L. Strigini, "Assessing the Reliability of Diverse Fault-Tolerant
Software-based Systems," in 65 Science, vol.40, 2002, pp.781-796.

[66] P.G. Bishop, Adelard, “Review of Software Design Diversity,” Software Fault Tolerance,
edited by M. Lyu, John Wiley & Sons, 1995.

 106

[67] A. Avizienis, M.R. Lyu, and W. Schutz, “In Search of Effective Diversity: A Six-Language
Study of Fault-Tolerant Flight Control Software,” in Proc. IEEE CS 18th Int’l Symp. Fault-
Tolerant Computing, IEEE CS Press, June 1988, pp. 15–22.

[68] U. Voges (Ed.), Software diversity in computerized control systems, Wien, Springer Verlag,
1988.

[69] D. Briere and P. Traverse, "Airbus A320/A330/A340 Electrical Flight Controls - A Family
Of Fault-Tolerant Systems", in FTCS-23, Proc. 23rd International Symposium on Fault-Tolerant
Computing, Toulouse, France, 22 - 24, 1993, pp. 616-623.

[70] H. Kantz and C. Koza, "The ELEKTRA Railway Signalling-System: Field Experience with
an Actively Replicated System with Diversity", in FTCS-25, Proc. 25th IEEE Annual
International Symposium on Fault -Tolerant Computing, Pasadena, California, 1995, pp. 453-
458.

[71] D. Eckhardt, A. Caglayan, J. Knight, L. Lee, D. McAllister, M. Vouk and J. Kelly, “An
Experimental Evaluation of Software Redundancy as a Strategy For Improving Reliability,” in
IEEE Transactions On Software Engineering, Vol 17, NO. 7, July 1991.

[72] M. R. Lyu, “Software Reliability Measurements in N-Version Software Execution
Environment,” in ISSRE'92, Proceedings 3rd International Symposium on Software Reliability
Engineering, Research Triangle Park, North Carolina, October 8-10 1992, pp. 254-263.

[73] Trusted Computing Group. [online], (February 2004) [cited February 23 2004], Available
at: https://www.trustedcomputinggroup.org/home

[74] HELP AMERICA VOTE ACT OF 2002, [online], (April 2003), [cited January 23 2004],
Available at: http://fecweb1.fec.gov/hava/hava.htm

[75] N. Lynch, Distributed Algorithms, Morgan Kaufman Publishers, 1996.

[76] B. Littlewood and L. Strigini, “Redundancy and diversity in security,” [online document],
(February 2003) [cited February 26 2004], Available at:
http://www.csr.city.ac.uk/people/lorenzo.strigini/ls.papers/_03_FTsecurity/sec_FT_v19.pdf

[77] S. Asiri, “Open Source,” in ACM SIGCAS, Computers and Society, Volume 32, Issue 5,
March 2003.

[78] R. Anderson, “Security in Open versus Closed Systems - The Dance of Boltzmann, Coase
and Moore,” in Open Source Software: Economics, Law and Policy Conference ‘02, June 2002.

[79] M. Jakobsson, A. Juels and R. Rivest, “Making mix nets robust for electronic voting by
randomized partial checking,” in USENIX '02, p. 339-353, February 2002.

 107

[80] M. K. Joseph. Architectural Issues in Fault-Tolerant, Secure Computing Systems. PhD
thesis, Computer Science Department, University of California, Los Angeles, June 1988.

[81] D. Chaum, “Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms,” in
Communications of the ACM, 24(2):84-88, February 1981.

[82] R. Butler and G. Finelli, “The Infeasibility of Quantifying the Reliability of Life-Critical
Real-Time Software,” in IEEE Transactions on Software Engineering, vol. 19, no. 1, Jan. 1993,
pp 3-12.

[83] D. Eckhardt and L. Lee, “A theoretical basis for the analysis of multiversion software
subject to coincident errors,” in IEEE Transactions on Software Engineering, SE-11, p. 1511-
1517, 1985.

[84] U.S. Census Bureau, Table 12. Reasons for Not Voting, by Sex, Age, Race and Hispanic
Origin, and Education: November 1998, [online article], (July 2000) [cited January 29 2004],
Available at: http://www.census.gov/population/socdemo/voting/cps1998/tab12.txt

[85] Americans With Disabilities Act Of 1990, [online], (January 1990) [cited February 17
2004], Available at: http://www.usdoj.gov/crt/ada/pubs/ada.txt

[86] A. Avizienis, P. Gunningberg, J. P. J. Kelly, L. Strigini, P. J. Traverse, K. S. Tso and U. 68,
“The UCLA Dedix System: A Distributed Testbed for Multiple-Version Software”, 15th Int.
Symposium on Fault-Tolerant Computing, Michigan, June 1985, pp. 126-134.

 108

Appendix A

Module Specifications

Ballot Request SubModule specification
(C) 2004 Soyini Liburd / MIT Media Laboratory

Purpose:
 The Ballot Request SubModule presents, to the Ballot Server Modules, the information required to
 determine the correct ballot and interface definition for that election and precinct. (The Ballot Server
Modules then send said ballot and interface definition to the User Interface Module.)
 The Ballot Request Modules run locally on the Voting Machine - the same machine that contains the User
Interface Module that will eventually display the ballot.
 Note, the Ballot Request is called a SubModule (dependent on the User Interface Module) because
 it runs locally, on the same machine as the User Interface Module,
 and the ballot it requests is eventually displayed on its Master User Interface Module.

Initialization:
 The Ballot Request SubModule has access to the location of a XML config file containing the ids,
 locations (hosts & ports) and public keys of its (master) User Interface Module and the Ballot Server
Modules.

 The Ballot Request SubModule also has access to its own private key which is stored locally, in secure
memory managed by a trusted computing base and accessible only to that Ballot Request Module.

 The Ballot Request SubModule is initialized with the election id and precinct id relevant to the Voting
Machine on which the Ballot Request SubModule resides.

Operation:

 The Ballot Request SubModule compiles the election id and precinct id, along with the local (master)
 User Interface's id into an XML document. The Ballot Request Module
 sends this XML document to each Ballot Server Module listed in the config file.

Expected Communications (XML):

Output Message:
 Ballot Request SubModule to Ballot Server Module:
 <!ELEMENT command (execute)>
 <!ELEMENT execute (get_ballots)>
 <!ELEMENT get_ballots (election_id, precinct_id, ui_id)>
 <!ELEMENT election_id (#PCDATA)>
 <!ELEMENT precinct_id (#PCDATA)>
 <!ELEMENT ui_id (#PCDATA)>

Exception Handling: Terminate any open connections then cease operation.

Timing Constraints: BallotRequest SubModule should output within __ seconds after it
 successfully reads the cd contents.

Diversity Requirements: Independent implementation by programmer.

 109

Ballot Server Module specification
(C) 2004 Soyini Liburd / MIT Media Laboratory

Purpose:
 The Ballot Server Module services requests for blank ballots and interface definitions.

Initialization:

 The Ballot Server Module has access to the location of a XML config file containing the ids,
 locations (hosts & ports) and public keys of the Ballot Request SubModules and
 User Interface Modules.

 The Ballot Server Module also has access to its own private key which is stored locally, in
 secure memory managed by a trusted computing base and accessible only to that Ballot Server
 Module.

 The Ballot Server Module is initialized with the absolute start and end (date &) time of the
 election in milliseconds.

Operation:

 The Ballot Server Module is responsible for delivering a blank ballot and interface definition to the UI
for display.

 The Ballot Server receieves ballot requests from Ballot Request SubModules. The ballot request is in the
form of an XML document containing the election id and precinct id, as well as the
 id of the User Interface module to which the ballot and interface should be sent for display.
 The Ballot Server only services requests received during the voting period (start to
 close of the election), requests at any other time are ignored. The Ballot Server uses some
 global, trusted time source such as NIST internet time servers.

 The Ballot Server waits for additional input (Ballot Request messages) for at most some Tmax
 seconds after receiving the first minF related messages. minF is some fraction of the maximum
 expected number of messages n, where n refers to the number of Ballot Request SubModules
 listed for the specified User Interface Module in the config file. minF has an absolute value greater
than 1 to prevent a malicious module from sending a message extremely early and wrongfully suspending the
Ballot Server Module's operation.
 The Ballot Server Module must receive at least ceil(n/2) related messages by Tmax seconds,
 otherwise the Server performs no operation on the input (because a majority is impossible with
 fewer messages, so there isn't enough confidence in the correctness of the input).
 Note that messages that are incorrectly formatted or
 unauthenticated, or repeat (related) messages from the same client, are immediately discarded.

 After the receiving period, the module compares the related input messages it has received and chooses
the message that occurs some majority (> n/2) of times as its official input message. The Ballot Server uses the
chosen (election id, precinct id) message to retrieve the right blank ballot and interface definition for that
precinct and election from its database. The database specification
 and implementation are left to the developer (the only requirement is that the correct ballot and
 interface definition be associated with each (precinct, election) pair. The Ballot Server sends the
 retrieved blank ballot and interface definition to the indicated User Interface for display.

 The Ballot Server Module keeps a record of User Interface Modules it has sent ballots to.

 110

Expected Communications (XML):

 Input Messages:

 BallotRequest Module to Ballot Server Module:
 <!ELEMENT command (execute)>
 <!ELEMENT execute (get_ballot)>
 <!ELEMENT get_ballot (election_id, precinct_id, ui_id)>
 <!ELEMENT election_id (#PCDATA)>
 <!ELEMENT precinct_id (#PCDATA)>
 <!ELEMENT ui_id (#PCDATA)>

 Output Messages:

 Ballot Server Module to User Interface Module:

 <!ELEMENT command (execute)>
 <!ELEMENT execute (display_ballots)>
 <!ELEMENT display_ballot (interface, ballots)>
 <!ELEMENT interface (#PCDATA)>
 <!ELEMENT ballots (one_ballot)+>
 <!ELEMENT one_ballot(ballot_id, creation_date, l_modification_date, author_name,
 language, state, county, precinct, election_id, interpretor_id, ballot_items) >
 <!ELEMENT ballot_id (#PCDATA)>
 <!ELEMENT creation_date (#PCDATA)>
 <!ELEMENT l_modification_date (#PCDATA)>
 <!ELEMENT author_name (#PCDATA)>
 <!ELEMENT language (#PCDATA)>
 <!ELEMENT state (#PCDATA)>
 <!ELEMENT county (#PCDATA)>
 <!ELEMENT precinct (#PCDATA)>
 <!ELEMENT election_id (#PCDATA)>
 <!ELEMENT interpretor_id (#PCDATA)>
 <!ELEMENT ballot_items (ballot_item)+>
 <!ELEMENT ballot_item (ballot_item_id, is_issue_p, is_preferential_p, issue_name,
 ballot_item_option+) >
 <!ELEMENT ballot_item_id (#PCDATA)>
 <!ELEMENT is_issue_p (#PCDATA)>
 <!ELEMENT is_preferential_p (#PCDATA)>
 <!ELEMENT issue_name (#PCDATA)>
 <!ELEMENT ballot_item_option (option_id, option_name,is_option_selected_p)>
 <!ELEMENT option_id (#PCDATA)>
 <!ELEMENT option_name (#PCDATA)>
 <!ELEMENT is_option_selected_p (#PCDATA)>

Exception Handling: Terminate any open connections then cease operation.

Timing Constraints: Ballot Server Module should output within __ seconds.

Diversity Requirements: Independent implementation by programmer.

User Interface Module specification

 111

(C) 2001 Jonathan Goler / MIT Media Laboratory
(C) 2003 Soyini Liburd / MIT Media Laboratory

Purpose:
 The User Interface Module displays a ballot for the user. It serves as the means for voters to make
 their selections. Additionally, it receives a copy of the ballot actually stored for that vote and displays
 this copy to the user, allowing the user to verify that his/her vote was actually cast as intended.

Operation:

Initialization:
 The User Interface Module has access to the location of a XML config file containing the ids, public
keys and locations (hosts & ports) of the Aggregator Modules, Listener Modules and Ballot Server Modules.

 The User Interface Module also has access to its own private key which is stored locally, in secure
 memory managed by a trusted computing base and accessible only to that User Interface Module.

 The User Interface module receives from each Ballot Server Module, a blank ballot for that precinct
and election, as well as an interface definition consistent with that precinct and election.
 The interface definition describes the way in which the UI is to render the ballot.

 The User Interface module waits for additional input (ballot+interface) messages for at most some Tmax1
seconds after receiving the first ceil(n/2) related messages, where n refers to the number of
 Ballot Server modules listed in the config file. All related messages will have the same
 interface definition and the same ballot (except for possibly the ballot id).
 Note that messages that are incorrectly formatted or unauthenticated, or repeat (related) messages
 from the same client, are immediately discarded.
 After the receiving period, the module compares the related input messages it has received and
 chooses the message that occurs some majority (> n/2) of times as its official input message.
 Note that this particular ballot and interface definition is used by the UI throughout the election.
 A fresh instance of this ballot is displayed for each new voter, and by request from the current voter.

Function:
 The User Interface module generates a unique ballot_id and displays the blank ballot to the voter as
specified by the elected interface definition. The voter then fills in the ballot, verifies its contents, and submits it.
 The Listener Sub Modules are responsible for capturing the completed ballot submitted by the
 user, rendering it into XML, encrypting it with the aggregator public keys and passing the
 encrypted ballots to the Registration Server Modules.

 The User Interface Module is also responsible for receiving copies of the ballots, tentatively stored
 for that voter, from the Aggregator modules. These ballots are encrypted with UI Module's public key.
 Again, the UI waits some maximum period Tmax2 seconds after receiving the first ceil(n/2) related
messages, where n refers to the number of Aggreagator modules listed in the config file. Here, related messages
should be identical encrypted ballots. Again messages that are incorrectly formatted or unauthenticated, or
repeat (related) messages from the same client, are immediately discarded.

 After the waiting period, the UI Module displays to the voter, the completed ballot that was sent in
 a majority of the input messages. At this point, the voter can indicate whether the ballot displayed
 for verification is the ballot that he/she intended to cast. The ability to re-vote (the part of the
 user interface that facilitates requesting a new ballot) should only be available to the voter for a
 limited amount of time. This restriction limits the possibility of subsequent exploitation if a

 112

 voter leaves before making the confirmation. The Listeners are again responsible for communicating
the voter's response to the rest of the system. If the voter verifies that the ballot displayed is his/her intent, the
voter's interaction with the system ends here. The Listeners would then report the voter's approval
 to the Aggregator Modules and Registration Server Modules.

 If however, the ballot is not what the voter intended to cast, the voter indicates whether there was a
 human error (on the part of the voter) or a system error, and can, if desired, request a new ballot.
 Once the voter indicates an error, the Listener Modules will relay this to the Aggregator Modules so that
they can invalidate the faulty ballot (so that it can be removed from official counts, etc).

 The Listeners would relay any request for a new ballot to the User Interface Module.
 After receiving such "fresh ballot" requests from Listener Modules and electing an official input from
these, the User Interface Module determines whether the "fresh ballot" request is valid (whether a majority of the
Listeners claim that a new ballot was requested). If a "fresh ballot" was indeed requested, the User
Interface Module generates a new ballot_id and displays a fresh instance of the ballot.

Expected Communications (XML):

 Input Messages:

 From Ballot Server Module to User Interface Module:
 New Ballot displayed to someone on their first vote attempt:

 <!ELEMENT command (execute)>
 <!ELEMENT execute (display_ballots)>
 <!ELEMENT display_ballot (interface, ballots)>
 <!ELEMENT interface (#PCDATA)>
 <!ELEMENT ballots (one_ballot)+>
 <!ELEMENT one_ballot(ballot_id, creation_date, l_modification_date, author_name,
 language, state, county, precinct, election_id, interpretor_id, ballot_items) >
 <!ELEMENT ballot_id (#PCDATA)>
 <!ELEMENT creation_date (#PCDATA)>
 <!ELEMENT l_modification_date (#PCDATA)>
 <!ELEMENT author_name (#PCDATA)>
 <!ELEMENT language (#PCDATA)>
 <!ELEMENT state (#PCDATA)>
 <!ELEMENT county (#PCDATA)>
 <!ELEMENT precinct (#PCDATA)>
 <!ELEMENT election_id (#PCDATA)>
 <!ELEMENT interpretor_id (#PCDATA)>
 <!ELEMENT ballot_items (ballot_item)+>
 <!ELEMENT ballot_item (ballot_item_id, is_issue_p, is_preferential_p, issue_name,
ballot_item_option+) >
 <!ELEMENT ballot_item_id (#PCDATA)>
 <!ELEMENT is_issue_p (#PCDATA)>
 <!ELEMENT is_preferential_p (#PCDATA)>
 <!ELEMENT issue_name (#PCDATA)>
 <!ELEMENT ballot_item_option (option_id, option_name,is_option_selected_p)>
 <!ELEMENT option_id (#PCDATA)>
 <!ELEMENT option_name (#PCDATA)>
 <!ELEMENT is_option_selected_p (#PCDATA)>

 From Aggregator Module to User Interface Module:
 <!ELEMENT command (execute)>

 113

 <!ELEMENT execute (verify)>
 <!ELEMENT verify (encrypted_ballot)>
 <!ELEMENT encrypted_ballot (#PCDATA)>

 Listener SubModule to User Interface Module (to obtain a fresh ballot for second chance voting):
 <!ELEMENT command (execute)>
 <!ELEMENT execute (fresh_ballot)>
 <!ELEMENT fresh_ballot (#PCDATA)>

Exception Handling: terminate any open connections then cease operation

 114

Listener SubModule specification
(C) 2001 Jonathan Goler / MIT Media Laboratory
(c) 2004 Soyini Liburd/ MIT Media Laboratory

Note:
 The Listener is called a SubModule (dependent on the User Interface Module) because it runs locally,
on the same machine as the User Interface Module, and is dependent on the User Interface Module for
initiation.

Purpose:
 The Listener SubModule listens for activity at the UI, records the voter's ballot selections and the
 ballot id and renders this information in XML. This completed XML ballot is encrypted using the public
keys of the Aggregator Modules and sent to the Registration Server Modules.

Initialization:
 The Listener SubModule has access to the location of a XML config file containing the ids,
 locations (hosts & ports) and public keys of the Registration Server Modules and Aggregator
 Modules. The Listener SubModule also has access to its own private key which is stored locally, in secure
memory managed by a trusted computing base and accessible only to that Listener SubModule.

Operation:
 The User Interface module starts up each Listener SubModule at which point the Listener module is
actively listening for user input at the UI.

 When the user presses "Enter Vote" at the UI, the Listener collects the voter's selections
 and the ballot id from the User Interface. For each Aggregator Module listed in the config file, the
 Listener SubModule encrypts a copy of the voter's completed ballot using that Aggregator
 Module's public key.
 The Listener Module will also read the user's encrypted voter information from a read-only compact
disc (associated with only one voter and mailed to the voter). This voter information is encrypted with the
Registration Modules public keys.
 The Listener SubModule then sends the encrypted ballots and voter information to the
 Registration Server Modules.

 The ballot that has been stored by the Aggregator modules are again presented to the voter so that
 the voter can indicate whether or not the ballot stored is the ballot he/she intended to cast.
 The Listener SubModule is responsible for communicating the voter's response to the rest of the system.

 If the voter verifies that the ballot displayed is his/her intent, the Listener SubModule communicates
this approval to the Aggregator Modules. The Listener then informs the Registration Server Modules that
the voter has submitted and finalized a ballot, by resending the voter's encrypted voter information along
with a note that the associated voter has approved a ballot.

 If however, the ballot is not what the voter intended to cast, the voter indicates whether there was a
 human error (on the part of the voter) or a system error, and can, if desired, request a new ballot.
 The error report (human or system error indication) is sent to servers that store such information for
quality control purposes. The Listener SubModules report that the ballot was faulty to the
 Aggregator Modules so that they can invalidate the faulty ballot (so that it can be removed from official
counts, etc).
 If the voter requests a new ballot, the Listener SubModule would relay this request to the User Interface
Module.

Expected Communications (XML):

 115

Output Message:

 Listener SubModule to Registration Server Module: Voter Check In
 <!ELEMENT command (execute)>
 <!ELEMENT execute (approve_ballot)>
 <!ELEMENT approve_ballot (ui_id, voter_info, encrypted_ballot_packages)>
 <!ELEMENT ui_id (#PCDATA)>
 <!ELEMENT voter_info (#PCDATA)>
 <!ELEMENT encrypted_ballot_packages (encrypted_ballot_package)+>
 <!ELEMENT encrypted_ballot_package (agg_id, encrypted_ballot)>
 <!ELEMENT agg_id (#PCDATA)>
 <!ELEMENT encrypted_ballot (#PCDATA)>

 Listener SubModule to Aggregator Module:
 <!ELEMENT command (execute)>
 <!ELEMENT execute (finalize_ballot)>
 <!ELEMENT finalize_ballot (encrypted_ballot)>
 <!ATTLIST finalize_ballot status (VALID|INVALID) #REQUIRED>
 <!ELEMENT encrypted_ballot (#PCDATA)>

 Listener SubModule to Registration Server Module: Finalize Voter
 <!ELEMENT command (execute)>
 <!ELEMENT execute (finalize_voter)>
 <!ELEMENT finalize_voter (voter_info)>
 <!ATTLIST finalize_voter status (DONE) #REQUIRED>
 <!ELEMENT voter_info (#PCDATA)>

 Listener SubModule to Error Servers:
 <!ELEMENT command (execute)>
 <!ELEMENT execute (report_error)>
 <!ELEMENT report_error (error_type)>
 <!ELEMENT error_type (#PCDATA)>

 Listener SubModule to User Interface Module:
 <!ELEMENT command (execute)>
 <!ELEMENT execute (fresh_ballot)>
 <!ELEMENT fresh_ballot (#PCDATA)>

Exception Handling: Terminate any open connections.

Timing Constraints: The Listener Module should output within __ seconds from the time the user hits
 enter vote.

Diversity Requirements: Independent implementation by programmer.

 116

Registration Server Module specification
(C) 2001 Jonathan Goler / MIT Media Laboratory
(C) 2004 Soyini Liburd / MIT Media Laboratory

Purpose:
 The Registration Server Module manages the registration data and check-in procedures for the
 election. The Registration Server Module holds a private key with which it signs ballots. In
 addition to the Registration Server signing key, third parties(the political parties, SIG's, etc)
 may have the option to include a witness module so that they can sign ballots as well. The server
 returns a ballot package devoid of voter name or other identifying information, and includes the
 signatures produced. The Registration Server Module will be set up on three ports, one for
 servicing Ballot Request Modules, another for servicing Listener Modules and a third for servicing
 Witness Modules.

Initialization:
 The Registration Server has access to the database of registration data, defined by the Registration
 Data Model[voter-registration.sql].

 The Registration Server Module also has access to the location of a XML config file containing the ids,
locations (hosts & ports) and public keys of the User Interface Modules, the Listener Modules, the Witness
Modules and the Aggregator Modules.

 The Registration Server Module also has access to its own private key which is stored locally, in secure
memory managed by a trusted computing base and accessible only to that Registration Server Module.

Operation:
 The functional requirements for initialization and maintenance of the registration database
 are not enumerated specifically because they do not interact with the rest of the system.
 For instance, the database does not specify the internal representation of data, although, for any
 practical purpose a reliable RDBMS such as Oracle, Informix, DB2, etc is expecteded.

 The Registration Server receives encrypted ballot packages from Listener Modules. An encrypted ballot
package contains an Aggregator Module ID as well as an encrypted ballot, encrypted with
 that Aggregator Module's public key. The Registration Server waits for additional input
 messages for at most some Tmax2 seconds after receiving the first ceil(n/2) related messages, where n
here refers to the number of Listener modules listed for the specified User Interface Module in the config file.
 Here related messages have the same associated User Interface and ballot id (the unique ballot id
 distinguishes the encrypted ballot). Again messages that are incorrectly formatted or unauthenticated,
or repeat (related) messages from the same client, are immediately discarded.

 The Registration Server chooses the ballot_packages message it has received a majority of times
 (among the related ballot_packages) as the official input ballot_packages message. The Registration
Server Module then extracts and decrypts the voter information from that message. The voter information
extracted includes the election_id of the election that the voter is certified to vote in, the precinct_id that the
voter is certified to vote at, and the voter's voter_registration_id which is a unique identifier that associates
that voter with a record in the registration database
 if in fact the voter should be allowed to vote.

 The Registration Server uses the voter_registration_id and the precinct_id to check the
 registration database to see if the voter is in fact registered to vote. If the voter is
 registered to vote and has not yet submitted a valid verified ballot, the Registration Server
 signs the encrypted ballot in each encrypted_ballot_package in the elected input message.

 117

 If the voter is registered to vote and has not yet been checked-in, the Registration Server checks in the voter
using the voter_registration_id, election_id and precinct_id.

 At this point, the Registration Server forwards each encrypted ballot, along with the Registration Server's
signature of that encrypted ballot, to the Witness Modules. The Witness Modules verify the Registration Server's
signature and then respond with their own signature of the encrypted ballot (if the Registration Server's signature
is valid). These Witness signatures are appended to the encrypted ballot and the Registration Server's own
signature in a signature package that consists of an Aggregator id, a ballot encrypted with that particular
Aggregator Module's public key, and all the signatures related to that encrypted ballot.

 After the Registration Server Module has finished communicating with the Witnesses, it sends each
signature package to the Vote Aggregator Module with the relevant public key
 (the public key that was used to encrypt the ballot in that package). The id of the User Interface module
that displayed that particular ballot is also included in the message to the Vote Aggregator Modules.

Format of (encrypted) voter_info:
 Note that the voter_info contains minimally the voter_registration_id, but may include
 any of the other fields as well.

 <!ELEMENT voter_info (voter_registration_id, first_names, last_name, address, address_2, city,
 state, zip)>
 <!ELEMENT voter_registration_id (#PCDATA)>
 <!ELEMENT first_names (#PCDATA)>
 <!ELEMENT last_name (#PCDATA)>
 <!ELEMENT address (#PCDATA)>
 <!ELEMENT address_2 (#PCDATA)>
 <!ELEMENT city (#PCDATA)>
 <!ELEMENT state (#PCDATA)>
 <!ELEMENT zip (#PCDATA)>

Expected Communications (XML):

 Input Messages:

 Listener SubModule to Registration Server Module: Voter Check In
 <!ELEMENT command (execute)>
 <!ELEMENT execute (approve_ballot)>
 <!ELEMENT approve_ballot (ui_id, voter_info, encrypted_ballot_packages)>
 <!ELEMENT ui_id (#PCDATA)>
 <!ELEMENT voter_info (#PCDATA)>
 <!ELEMENT encrypted_ballot_packages (encrypted_ballot_package)+>
 <!ELEMENT encrypted_ballot_package (agg_id, encrypted_ballot)>
 <!ELEMENT agg_id (#PCDATA)>
 <!ELEMENT encrypted_ballot (#PCDATA)>

 Listener SubModule to Registration Server Module: Finalize Voter
 <!ELEMENT command (execute)>
 <!ELEMENT execute (finalize_voter)>
 <!ELEMENT finalize_voter (voter_info)>
 <!ATTLIST finalize_voter status (DONE) #REQUIRED>
 <!ELEMENT voter_info (#PCDATA)>

 Witness Module to Registration Server Module:
 <!ELEMENT results (witness_result)>
 <!ELEMENT witness_result (signed_ballot_package)>

 118

 <!ATTLIST witness_result status (FAILURE|SUCCESS) #REQUIRED>
 <!ELEMENT signed_ballot_package (agg_id, encrypted_ballot, encrypted_signature_packages)>
 <!ELEMENT agg_id (#PCDATA)>
 <!ELEMENT encrypted_ballot (#PCDATA)>
 <!ELEMENT encrypted_signature_packages (encrypted_signature_package)+>
 <!ELEMENT encrypted_signature_package (signer_id, encrypted_signature)>
 <!ATTLIST encrypted_signature_package signer_type (regserver|witness) #REQUIRED>
 <!ELEMENT signer_id (#PCDATA)>
 <!ELEMENT encrypted_signature (#PCDATA)>

 Output Messages:

 Registration Server Module to Witness Module:
 <!ELEMENT command (execute)>
 <!ELEMENT execute (witness)>
 <!ELEMENT witness (signed_ballot_package)>
 <!ELEMENT signed_ballot_package (agg_id, encrypted_ballot, encrypted_signature_packages)>
 <!ELEMENT agg_id (#PCDATA)>
 <!ELEMENT encrypted_ballot (#PCDATA)>
 <!ELEMENT encrypted_signature_packages (encrypted_signature_package)+>
 <!ELEMENT encrypted_signature_package (signer_id, encrypted_signature)>
 <!ATTLIST encrypted_signature_package signer_type (regserver|witness) #REQUIRED>
 <!ELEMENT signer_id (#PCDATA)>
 <!ELEMENT encrypted_signature (#PCDATA)>

 Registration Server Module to Vote Aggregator Module:
 <!ELEMENT command (execute)>
 <!ELEMENT execute (aggregate)>
 <!ELEMENT aggregate (ui_id, signed_ballot_package)>
 <!ELEMENT ui_id (#PCDATA)>
 <!ELEMENT signed_ballot_package (agg_id, encrypted_ballot, encrypted_signature_packages)>
 <!ELEMENT agg_id (#PCDATA)>
 <!ELEMENT encrypted_ballot (#PCDATA)>
 <!ELEMENT encrypted_signature_packages (encrypted_signature_package)+>
 <!ELEMENT encrypted_signature_package (signer_id, encrypted_signature)>
 <!ATTLIST encrypted_signature_package signer_type (regserver|witness) #REQUIRED>
 <!ELEMENT signer_id (#PCDATA)>
 <!ELEMENT encrypted_signature (#PCDATA)>

 119

Witness Module Specification
(c) 2001 Jonathan Goler / MIT Media Laboratory
 2004 Soyini Liburd / MIT Media Laboratory

Purpose:
 To permit an independent agency to examine the hash of an encrypted ballot.
 And produce a digital signature to attach to the ballot.

Initialization:
 The Witness Module has access to the location of a XML config file containing the public keys and
locations (hosts & ports) of the Registration Server Modules.

 The Witness Module also has access to its own private key which is stored locally, in secure memory
managed by a trusted computing base and accessible only to that Witness Module.

Operation:
 Whenever a new encrypted ballot is received, once it is validated by the registration system, each witness
in the registration server's witness list is contacted with a hash of the ballot. The Witness module verifies that the
Registration Server's signature of the encrypted ballot is valid. If the Registration Server's signature is valid, the
Witness creates a timestamp(to millisecond) and digitally signs the combination of the timestamp and the
hashed ballot with the Witness's private key. If the Registration Server's signature is invalid, or there is some
other problem, the Witness module responds with witness_result status="FAILURE"

Expected Communications (XML):

 Input Message:

 Registration Server Module to Witness Module:
 <!ELEMENT command (execute)>
 <!ELEMENT execute (witness)>
 <!ELEMENT witness (signed_ballot_package)>
 <!ELEMENT signed_ballot_package (agg_id, encrypted_ballot, encrypted_signature_packages)>
 <!ELEMENT agg_id (#PCDATA)>
 <!ELEMENT encrypted_ballot (#PCDATA)>
 <!ELEMENT encrypted_signature_packages (encrypted_signature_package)+>
 <!ELEMENT encrypted_signature_package (signer_id, encrypted_signature)>
 <!ATTLIST encrypted_signature_package signer_type (regserver|witness) #REQUIRED>
 <!ELEMENT signer_id (#PCDATA)>
 <!ELEMENT encrypted_signature (#PCDATA)>

 Output Message:

 Witness Module to Registration Server Module:
 <!ELEMENT results (witness_result)>
 <!ELEMENT witness_result (signed_ballot_package)>
 <!ATTLIST witness_result status (FAILURE|SUCCESS) #REQUIRED>
 <!ELEMENT witness_signed_ballot_package (agg_id, encrypted_ballot, digest_timestamp,
 encrypted_signature_package)>
 <!ELEMENT agg_id (#PCDATA)>
 <!ELEMENT encrypted_ballot (#PCDATA)>
 <!ELEMENT digest_timestamp (#PCDATA)>
 <!ELEMENT encrypted_signature_package (signer_id, encrypted_signature)>

 120

 <!ATTLIST encrypted_signature_package signer_type (witness) #REQUIRED>
 <!ELEMENT signer_id (#PCDATA)>
 <!ELEMENT encrypted_signature (#PCDATA)>

Exception Handling: responds with witness_result attribute status="FAILURE"

Timing Constraints: The Witness Module should return within __ seconds (otherwise it's return value is ignored).

Diversity Requirements: Independent implementation by programmer.

 121

Aggregator Module specification
(C) 2001 Jonathan Goler / MIT Media Laboratory
(C) 2004 Soyini Liburd / MIT Media Laboratory

Purpose:
 The Aggregator Module is responsible for storing and verifying all of the data
 related to votes cast. The Aggregator will be set up on two ports, one for receiving
 ballots and the other for verifying ballots.

Initialization:
 The Vote Aggregator Module has access to the location of a XML config file containing the ids,
 public keys and locations (hosts & ports) of the Registration Server, Listener and
 User Interface Modules.

 The Aggregator Module also has access to its own private key which is stored locally, in
 secure memory managed by a trusted computing base and accessible only to that Aggregator Module.

Operation:
 The Aggregator will receive encrypted signed ballot packages from the Registration Server
 Modules.
 In addition to the ballot itself, which is encrypted using this server's public key, the ballot
 package contains digital signatures of the Registration Server, and those of the signing Witnesses.
 The Aggregator waits for additional input (Register Server Module messages) for at most some Tmax1
seconds after receiving the first ceil(n/2) related messages, where n refers to the number of
 Register Server modules listed in the config file. All related messages will have the same
 encrypted ballot package. Note that messages that are incorrectly formatted or unauthenticated, or
 repeat (related) messages from the same client, are immediately discarded.
 After the receiving period, the Aggregator module compares the related input messages it has received
and chooses the message that occurs some majority (> n/2) of times as its official input message. The Aggregator
then unpacks the chosen ballot package: it verifies all of the included digital signatures, decrypts the ballot with its
private key, and stores the ballot's data in its database.

 To verify that the vote stored is the vote cast, the Aggregator retrieves the ballot from its database,
 encrypts the ballot with public key of the User Interface module indicated in the message from the
 Registration Server Module, and sends the encrypted ballot to that User Interface Module.
 The User Interface module then displays the ballot and the voter indicates whether or not this is the vote
he / she intended to cast. The Listener Modules are responsible for communicating the voter's intention back to
the Aggregator Module. The Listener Module does this by sending the Aggregator Module a message containing
the completed ballot (encrypted) that the UI displayed for verification by the user, as well as a status
attribute indicating whether that ballot was deemed VALID or INVALID.
 The Aggregator waits for additional input (Listener Module messages) for at most some Tmax2
 seconds after receiving the first ceil(n/2) related messages, where n refers to the number of
 Listener modules listed in the config file. All related messages will have the same
 ballot and status attribute value. Note that messages that are incorrectly formatted or
 unauthenticated, or repeat (related) messages from the same client, are immediately discarded.
 After the receiving period, the Aggregator module compares the related input messages it has received
and chooses the message that occurs some majority (> n/2) of times as its official input message.

 If the finalize_ballot status of the elected input message is VALID, the aggregator checks to see whether
the elected ballot is identical to the one it has stored in its database. If the elected ballot is the same as the
aggregator's stored ballot, the aggregator knows that the vote has been successfully cast.
 The Aggregator Module would then encrypt the ballot using the public keys of appropriate,
 authenticated storage servers (precinct, county, etc) and sends the ballot out to these servers.

 122

 If the finalize_ballot status of the elected input message is INVALID, the Aggregator Module is
 responsible for ensuring that its copy of that ballot (the ballot it has stored with that ballot's
 ballot id) is invalidated. That is, the Aggregator Module must ensure that its stored ballot is not included
in any official count or declaration of votes.

Expected Communications (XML):

 Input Messages:

 Registration Server Module to Aggregator Module:
 <!ELEMENT command (execute)>
 <!ELEMENT execute (aggregate)>
 <!ELEMENT aggregate (ui_id, signed_ballot_package)>
 <!ELEMENT ui_id (#PCDATA)>
 <!ELEMENT signed_ballot_package (agg_id, encrypted_ballot, encrypted_signature_packages)>
 <!ELEMENT agg_id (#PCDATA)>
 <!ELEMENT encrypted_ballot (#PCDATA)>
 <!ELEMENT encrypted_signature_packages (encrypted_signature_package)+>
 <!ELEMENT encrypted_signature_package (signer_id, encrypted_signature)>
 <!ATTLIST encrypted_signature_package signer_type (regserver|witness) #REQUIRED>
 <!ELEMENT signer_id (#PCDATA)>
 <!ELEMENT encrypted_signature (#PCDATA)>

 Listener SubModule to Aggregator Module:
 <!ELEMENT command (execute)>
 <!ELEMENT execute (finalize_ballot)>
 <!ELEMENT finalize_ballot (encrypted_ballot)>
 <!ATTLIST finalize_ballot status (VALID|INVALID) #REQUIRED>
 <!ELEMENT encrypted_ballot (#PCDATA)>

 Output Messages:

 From Aggregator Module to User Interface Module:
 <!ELEMENT command (execute)>
 <!ELEMENT execute (verify)>
 <!ELEMENT verify (encrypted_ballot)>
 <!ELEMENT encrypted_ballot (#PCDATA)>

Exception Handling: terminate any open connections then cease operation

Timing Constraints: The Aggregator Module should return within __ seconds (otherwise it's return value is ignored).

Diversity Requirements: Independent implementation by programmer.

DTD Files

ballot.dtd
<!ELEMENT ballots (one_ballot)+>
 <!ELEMENT one_ballot(ballot_id, creation_date, l_modification_date, author_name,

 123

 language, state, county, precinct, election_id, interpretor_id,
 ballot_items) >
 <!ELEMENT ballot_id (#PCDATA)>
 <!ELEMENT creation_date (#PCDATA)>
 <!ELEMENT l_modification_date (#PCDATA)>
 <!ELEMENT author_name (#PCDATA)>
 <!ELEMENT language (#PCDATA)>
 <!ELEMENT state (#PCDATA)>
 <!ELEMENT county (#PCDATA)>
 <!ELEMENT precinct (#PCDATA)>
 <!ELEMENT election_id (#PCDATA)>
 <!ELEMENT interpretor_id (#PCDATA)>

 <!ELEMENT ballot_items (ballot_item)+>
 <!ELEMENT ballot_item (ballot_item_id, is_issue_p, is_preferential_p, issue_name,
 ballot_item_option+) >
 <!ELEMENT ballot_item_id (#PCDATA)>
 <!ELEMENT is_issue_p (#PCDATA)>
 <!ELEMENT is_preferential_p (#PCDATA)>
 <!ELEMENT issue_name (#PCDATA)>
 <!ELEMENT ballot_item_option (option_id,
 option_name,is_option_selected_p)>
 <!ELEMENT option_id (#PCDATA)>
 <!ELEMENT option_name (#PCDATA)>
 <!ELEMENT is_option_selected_p (#PCDATA)>

cipher-ballot.dtd
<!ELEMENT cipher-ballot(ciphertext, signature)>
<!ELEMENT ciphertext (#PCDATA)>
<!ELEMENT signature (#PCDATA)>

 124

voter-registration.dtd
<!ELEMENT voter_reg_dataset (voter_registration_record)+)>

 <!ELEMENT voter_registration_record (record_id, first_names,
 last_name, address, address_2, city, state, zip, precinct_id,
 license_no, ssn)>

 <!ELEMENT record_id (#PCDATA)>
 <!ELEMENT first_names (#PCDATA)>
 <!ELEMENT last_name (#PCDATA)>
 <!ELEMENT address (#PCDATA)>
 <!ELEMENT address_2 (#PCDATA)>
 <!ELEMENT city (#PCDATA)>
 <!ELEMENT state (#PCDATA)>
 <!ELEMENT zip (#PCDATA)>
 <!ELEMENT precinct_id (#PCDATA)>
 <!ELEMENT license_no (#PCDATA)>
 <!ELEMENT record_id (#PCDATA)>

directory.dtd
<!ELEMENT dir (module)+>
<!ELEMENT module (id, public_keys, certificates, host, ports, services, submodules)>
<!ATTLIST module module_type CDATA #REQUIRED>
<!ELEMENT id (#PCDATA)>
<!ELEMENT public_keys (public_key)*>
<!ELEMENT public_key (#PCDATA)>
<!ATTLIST public_key owner_id CDATA #REQUIRED>
<!ATTLIST public_key function CDATA #REQUIRED>
<!ELEMENT certificates (certificate)*>
<!ELEMENT certificate (#PCDATA)>
<!ATTLIST certificate owner_id CDATA #REQUIRED>
<!ATTLIST certificate signer CDATA #REQUIRED>
<!ELEMENT host (#PCDATA)>
<!ELEMENT ports (port)*>
<!ELEMENT port (#PCDATA)>
<!ATTLIST port function CDATA #REQUIRED>
<!ELEMENT services (service)+>
<!ELEMENT service (#PCDATA)>
<!ATTLIST service service_name CDATA #REQUIRED>
<!ELEMENT submodules (submodule)*>
<!ELEMENT submodule (id, public_key, certificates, host, ports, services)>
<!ATTLIST submodule submodule_type CDATA #REQUIRED>

authenticationToken.dtd
<!ELEMENT authenticate_token (election_id, precinct_id, voter_information_packages, election_signature)>
<!ELEMENT election_id (#PCDATA)>
<!ELEMENT precinct_id (#PCDATA)>
<!ELEMENT voter_information_packages (voter_information_package)+>
<!ELEMENT voter_information_package (reg_id, encrypted_voter_information)>
<!ELEMENT reg_id (#PCDATA)>
<!ELEMENT encrypted_voter_information (#PCDATA)>
<!ELEMENT election_signature (#PCDATA)>

 125

Appendix B

Script to calculate PFD estimates according to a simplification of the Model in Chapter 4.

/** ReliabilityEst.java
 Author: Soyini Liburd.

 Simple, informal class based on a simplified version of
 the SAVE reliabilty model. Created to allow quick calculation
 of an estimate of the Probability of Failure of a
 multi-stage, N-version system, constrained as described
 in Chapter 4 of the associated thesis.
 */

public class ReliabilityEst{

 //N number of modules per stage
 private int N=10;
 private double Nd = 10.0;
 //M number of stages
 private int M=6;
 //I number of fault types
 private int I=20;
 //c pr channel failure
 private double c=.05;
 //p pr that a module contains a given fault
 private double p = .4;
 //q pr that a given fault is "hit
 private double q = .0;
 //h pr that a demand hits a fault
 private double h = .8;

 public static void main(String[] args){
 ReliabilityEst est = new ReliabilityEst();

 if(args == null){
 est.test();
 return;
 }

 if(args.length ==1){
 est.p=(new Double(args[0])).doubleValue();
 }
 else if(args.length ==2){
 est.setcpVals((new Double(args[0])).doubleValue(),
 (new Double(args[1])).doubleValue());
 }
 else if(args.length ==3){
 est.setNcpVals((new Integer(args[0])).intValue(),
 (new Double(args[1])).doubleValue(),
 (new Double(args[2])).doubleValue());
 }
 else if (args.length ==4){
 est.setNcphVals((new Integer(args[0])).intValue(),
 (new Double(args[1])).doubleValue(),

 126

 (new Double(args[2])).doubleValue(),
 (new Double(args[3])).doubleValue());
 }
 else if (args.length ==5){
 est.setNIcphVals((new Integer(args[0])).intValue(),
 (new Integer(args[1])).intValue(),
 (new Double(args[2])).doubleValue(),
 (new Double(args[3])).doubleValue(),
 (new Double(args[4])).doubleValue());
 }
 else if (args.length ==6){
 est.setAllVals((new Integer(args[0])).intValue(),
 (new Integer(args[1])).intValue(),
 (new Integer(args[2])).intValue(),
 (new Double(args[3])).doubleValue(),
 (new Double(args[4])).doubleValue(),
 (new Double(args[5])).doubleValue());
 }
 est.test();
 }

 public void test(){
 System.out.println("N-version Pr Failure: "+RelEst(N));
 System.out.println("1-version Pr Failure: "+RelEst(1));
 }

 public ReliabilityEst(){}

 public double stuffCalc(int n){
 int ceiln_2 = (new Double(Math.ceil((double)n/2))).intValue();
 int floorn_2p1 = (new Double(Math.floor((double)n/2))).intValue() + 1;
 int rmin = (new Double(Math.ceil(floorn_2p1))).intValue();

 double V = Vcalc(n, rmin, n, c);
 double S = sum_binomial(n, V, n, ceiln_2);

 return S + ((1 - S) * O1calc(n));

 }

 public double O1calc(int n){
 double o1 = 0.0;
 int ceiln_2 = (new Double(Math.ceil((double)n/2))).intValue();
 q=h/((double)I);

 for(int i=0; i<I; i++){
 o1 = o1 + (q*sum_binomial(n, p, n, ceiln_2));
 }

 return o1;
 }

 public double Vcalc(int Rmax, int Rmin, int n, double cv){
 double dN_2 = (double)n/2.0;
 int ceilN_2 = (new Double(Math.ceil(dN_2))).intValue();
 int floorN_2 = (new Double(Math.floor(dN_2))).intValue();

 127

 double inv_ceilN_2 = 1.0/(double)ceilN_2;
 double v = 0.0;
 double cr_n = cv*(((double)Rmin)/((double)n));

 int min = 0;

 for(int R=Rmin; R<=Rmax; R++){
 min = (new Double(Math.ceil((double)R - floorN_2))).intValue();
 v = v + (sum_binomial(n, cr_n, R, min)*inv_ceilN_2);
 }
 return v;
 }

 public double RelEst(int n){
 int ceiln_2 = (new Double(Math.ceil((double)n/2))).intValue();
 double Om = O1calc(n);

 double stuff = stuffCalc(n);
 for(int i=2;i<M;i++){
 Om = Om + (1.0 - Om)*stuff;
 }
 return Om;
 }

 public double sum_binomial(int n, double p, int max, int min){
 double sum = 0.0;

 for(int i=min; i<=max; i++)
 sum = sum + binomial(n, p, i);
 return sum;
 }

 public double weight_sum_binomial(double w, int n, double p, int max, int min){
 double sum = 0.0;

 for(int i=min; i<=max; i++)
 sum = sum + binomial(n, p, i)/w;
 return sum;
 }

 public double binomial(int n, double p, int k){
 return bincoeff(n, k) * Math.pow(p, k) * Math.pow((1-p), (n-k));
 }

 public int bincoeff(int n, int k) {
 if (k == 0) return 1;
 if (n==k) return 1;
 return bincoeff(n-1, k-1) + bincoeff(n-1,k);
}

 public void setAllVals(int Nv, int Mv, int Iv, double cv, double pv, double hv){
 N=Nv;
 Nd= (double)N;
 M=Mv;
 I=Iv;

 128

 c=cv;
 p=pv;
 h=hv;
 }

 public void setNIcphVals(int Nv, int Iv, double cv, double pv, double hv){
 N=Nv;
 Nd= (double)N;
 I=Iv;
 c=cv;
 p=pv;
 h=hv;
 }

 public void setNcphVals(int Nv, double cv, double pv, double hv){
 N=Nv;
 Nd= (double)N;
 c=cv;
 p=pv;
 h=hv;
 }

 public void setNcpVals(int nv, double cv, double pv){
 N=nv;
 c=cv;
 p=pv;
 }

 public void setcpVals(double cv, double pv){
 c=cv;
 p=pv;
 }

 public void setpVal(double pv){
 p=pv;
 }

}

